High resolution flat-panel CT arthrography vs. MR arthrography of artificially created osteochondral defects in ex vivo upper ankle joints

Author:

Pöhler Gesa H.,Sonnow LenaORCID,Ettinger Sarah,Rahn Alexandra,Klimes FilipORCID,Becher Christoph,von Falck Christian,Wacker Frank K.,Plaass ChristianORCID

Abstract

Purpose High resolution flat-panel computed tomography arthrography (FPCT-A) and magnetic resonance arthrography (MR-A) are well suited to evaluate osteochondral lesions. The current study compares the performance of FPCT-A versus MR-A in an experimental setting. Methods Fourteen cadaveric ankles were prepared with artificial osteochondral defects of various sizes in four separate talar locations. After intra-articular contrast injection, FPCT-A and 3-T MR-A were acquired. Each defect was then filled with synthetic pallets. The resulting cast was used as reference. Two independent radiologists measured the dimensions of all defects with FPCT-A and MR-A. Intra-class correlation coefficients (ICC) were calculated. Data were compared using t-tests and Bland-Altman plots. Results The correlation for FPCT-A and cast was higher compared to MR-A and cast (ICC 0.876 vs. 0.799 for surface [length x width]; ICC 0.887 vs. 0.866 for depth, p<0.001). Mean differences between FPCT-A and cast measurements were -1.1 mm for length (p<0.001), -0.7 mm for width (p<0.001) and -0.4 mm for depth (p = 0.023). By MR-A, there were no significant differences for length and width compared to cast (p>0.05). Depth measurements were significantly smaller by MR-A (mean difference -1.1 mm, p<0.001). There was no bias between the different modalities. Conclusions Ex vivo FPCT-A and MR-A both deliver high diagnostic accuracy for the evaluation of osteochondral defects. FPCT-A was slightly more accurate than MR-A, which was most significant when measuring lesion depth.

Funder

Alwin Jäger Stiftung

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3