Generation of cryopreserved macrophages from normal and genetically engineered human pluripotent stem cells for disease modelling

Author:

Munn ChristieORCID,Burton Sarah,Dickerson Sarah,Bakshy Kiranmayee,Strouse Anne,Rajesh DeepikaORCID

Abstract

Macrophages are innate immune cells that play critical roles in tissue homeostasis, inflammation, and immune oncology. Macrophages differentiated from human induced pluripotent stem cells (iPSCs) overcome many limitations of using peripheral blood derived macrophages. The ability to scale up and cryopreserve a large amount of end stage macrophages from single clonal iPSCs from normal and disease specific donors offers a unique opportunity for genomic analysis and drug screening. The present study describes the step wise generation and characterization of macrophages from iPSCs using a defined serum free method amenable to scale up to generate a large batch of pure end stage cryopreservable macrophages expressing CD68, CD33, CD11c, CD11b, CD1a, HLA-DR, CD86, CD64, CD80, CD206, CD169, CD47, HLA-ABC, and CX3CR. The end stage macrophages pre and post cryopreservation retain purity, morphology, responsiveness to stimuli and display robust phagocytic function coming right out of cryopreservation. The same differentiation process was used to generate end stage macrophages from isogenic iPSCs engineered to mimic mutations associated with Parkinson’s disease (SNCA A53T), neuronal ceroid lipofuscinosis (GRN2/GRN R493X), and Rett syndrome (MECP2-Knockout). End stage macrophages from isogenic engineered clones displayed differential macrophage-specific purity markers, phagocytic function, and response to specific stimuli. Thus, generating a panel of functional, physiologically relevant iPSC-derived macrophages can potentially facilitate the understanding of neural inflammatory responses associated with neurodegeneration.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3