Risk prediction models for intensive care unit-acquired weakness in intensive care unit patients: A systematic review

Author:

Zhang WeiORCID,Tang Yun,Liu Huan,Yuan Li ping,Wang Chu chu,Chen Shu fan,Huang Jin,Xiao Xin yuan

Abstract

Background and objectives Intensive care unit-acquired weakness (ICU-AW) commonly occurs among intensive care unit (ICU) patients and seriously affects the survival rate and long-term quality of life for patients. In this systematic review, we synthesized the findings of previous studies in order to analyze predictors of ICU-AW and evaluate the discrimination and validity of ICU-AW risk prediction models for ICU patients. Methods We searched seven databases published in English and Chinese language to identify studies regarding ICU-AW risk prediction models. Two reviewers independently screened the literature, evaluated the quality of the included literature, extracted data, and performed a systematic review. Results Ultimately, 11 studies were considered for this review. For the verification of prediction models, internal verification methods had been used in three studies, and a combination of internal and external verification had been used in one study. The value for the area under the ROC curve for eight models was 0.7–0.923. The predictor most commonly included in the models were age and the administration of corticosteroids. All the models have good applicability, but most of the models are biased due to the lack of blindness, lack of reporting, insufficient sample size, missing data, and lack of performance evaluation and calibration of the models. Conclusions The efficacy of most models for the risk prediction of ICU-AW among high-risk groups is good, but there was a certain bias in the development and verification of the models. Thus, ICU medical staff should select existing models based on actual clinical conditions and verify them before applying them in clinical practice. In order to provide a reliable basis for the risk prediction of ICU-AW, it is necessary that large-sample, multi-center studies be conducted in the future, in which ICU-AW risk prediction models are verified.

Funder

Key Laboratory of Microbial Resources and Drug Development in Guizhou Province

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3