Abstract
Critical period plasticity at adult-born neuron synapses is widely believed to contribute to the learning and memory functions of the hippocampus. Experience regulates circuit integration and for a transient interval, until cells are ~6 weeks old, new neurons display enhanced long-term potentiation (LTP) at afferent and efferent synapses. Since neurogenesis declines substantially with age, this raises questions about the extent of lasting plasticity offered by adult-born neurons. Notably, however, the hippocampus receives sensory information from two major cortical pathways. Broadly speaking, the medial entorhinal cortex conveys spatial information to the hippocampus via the medial perforant path (MPP), and the lateral entorhinal cortex, via the lateral perforant path (LPP), codes for the cues and items that make experiences unique. While enhanced critical period plasticity at MPP synapses is relatively well characterized, no studies have examined long-term plasticity at LPP synapses onto adult-born neurons, even though the lateral entorhinal cortex is uniquely vulnerable to aging and Alzheimer’s pathology. We therefore investigated LTP at LPP inputs both within (4–6 weeks) and beyond (8+ weeks) the traditional critical period. At immature stages, adult-born neurons did not undergo significant LTP at LPP synapses, and often displayed long-term depression after theta burst stimulation. However, over the course of 3–4 months, adult-born neurons displayed increasingly greater amounts of LTP. Analyses of short-term plasticity point towards a presynaptic mechanism, where transmitter release probability declines as cells mature, providing a greater dynamic range for strengthening synapses. Collectively, our findings identify a novel form of new neuron plasticity that develops over an extended interval, and may therefore be relevant for maintaining cognitive function in aging.
Funder
Canadian Institutes of Health Research
Michael Smith Foundation for Health Research
Canadian Foundation for Innovation
Publisher
Public Library of Science (PLoS)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献