Sensitivity analysis of the CROPGRO-Canola model in China: A case study for rapeseed

Author:

Xu Mancan,Wang Chunmeng,Ling LinORCID,Batchelor William D.ORCID,Zhang Jian,Kuai Jie

Abstract

Increasing domestic rapeseed production is an important national goal in China. Researchers often use tools such as crop models to determine optimum management practices for new varieties to increased production. The CROPGRO-Canola model has not been used to simulate rapeseed in China. The overall goal of this work was to identify key inputs to the CROPGRO-Canola model for calibration with limited datasets in the Yangtze River basin. First, we conducted a global sensitivity analysis to identify key genetic and soil inputs that have a large effect on simulated days to flowering, days to maturity, yield, above-ground biomass, and maximum leaf area index. The extended Fourier amplitude test method (EFAST) sensitivity analysis was performed for a single year at 8 locations in the Yangtze River basin (spatial analysis) and for seven years at a location in Wuhan, China (temporal analysis). The EFAST software was run for 4520 combinations of input parameters for each site and year, resulting in a sensitivity index for each input parameter. Parameters were ranked using the top-down concordance method to determine relative sensitivity. Results indicated that the model outputs of days to flowering, days to maturity, yield, above-ground biomass, and maximum leaf area index were most sensitive to parameters that affect the duration of critical growth periods, such as emergence to flowering, and temperature response to these stages, as well as parameters that affect total biomass at harvest. The five model outputs were also sensitive to several soil parameters, including drained upper and lower limit (SDUL and SLLL) and drainage rate (SLDR). The sensitivity of parameters was generally spatially and temporally stable. The results of the sensitivity analysis were used to calibrate and evaluate the model for a single rapeseed experiment in Wuhan, China. The model was calibrated using two seasons and evaluated using three seasons of data. Excellent nRMSE values were obtained for days to flowering (≤1.71%), days to maturity (≤ 1.48%), yield (≤ 9.96%), and above-ground biomass (≤ 9.63%). The results of this work can be used to guide researchers on model calibration and evaluation across the Yangtze River basin in China.

Funder

national key research and development project

National Institute of Food and Agriculture, U.S. Department of Agriculture, Hatch project

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference50 articles.

1. Development, potential and adaptation of Chinese rapeseed industry.;C Liu;Chinese Journal of Oil Crop Sciences,2019

2. Challenges and opportunities of edible vegetable oil market in China;D He;Science and Technology of Cereals, Oils and Foods,2020

3. Rapeseed research and production in China.;Q Hu;The Crop Journal,2017

4. Effects of Planting Date on Winter Canola Growth and Yield in the Southwestern U.S.;H Sultan;American Journal of Plant Sciences,2016

5. The yield of mechanically harvested rapeseed (Brassica napus L.) can be increased by optimum plant density and row spacing.;J Kuai;Scientific Reports,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3