Haplotype network branch diversity, a new metric combining genetic and topological diversity to compare the complexity of haplotype networks

Author:

Garcia EricORCID,Wright Daniel,Gatins Remy,Roberts May B.,Pinheiro Hudson T.,Salas Eva,Chen Jei-Ying,Winnikoff Jacob R.,Bernardi GiacomoORCID

Abstract

A common way of illustrating phylogeographic results is through the use of haplotype networks. While these networks help to visualize relationships between individuals, populations, and species, evolutionary studies often only quantitatively analyze genetic diversity among haplotypes and ignore other network properties. Here, we present a new metric, haplotype network branch diversity (HBd), as an easy way to quantifiably compare haplotype network complexity. Our metric builds off the logic of combining genetic and topological diversity to estimate complexity previously used by the published metric haplotype network diversity (HNd). However, unlike HNd which uses a combination of network features to produce complexity values that cannot be defined in probabilistic terms, thereby obscuring the values’ implication for a sampled population, HBd uses frequencies of haplotype classes to incorporate topological information of networks, keeping the focus on the population and providing easy-to-interpret probabilistic values for randomly sampled individuals. The goal of this study is to introduce this more intuitive metric and provide an R script that allows researchers to calculate diversity and complexity indices from haplotype networks. A group of datasets, generated manually (model dataset) and based on published data (empirical dataset), were used to illustrate the behavior of HBd and both of its terms, haplotype diversity, and a new index called branch diversity. Results followed a predicted trend in both model and empirical datasets, from low metric values in simple networks to high values in complex networks. In short, the new combined metric joins genetic and topological diversity of haplotype networks, into a single complexity value. Based on our analysis, we recommend the use of HBd, as it makes direct comparisons of network complexity straightforward and provides probabilistic values that can readily discriminate situations that are difficult to resolve with available metrics.

Funder

University of California Library system

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference26 articles.

1. Molecular Markers, Natural History and Evolution;JC Avise;Springer US,1994

2. Systematic relationships of sympatric pipefishes (Syngnathus spp.): A mismatch between morphological and molecular variation;E Garcia;J Fish Biol,2019

3. Darwin’s fishes: phylogeography of Galápagos Islands reef fishes;G Bernardi;Bull Mar Sci,2014

4. Island biogeography of marine organisms;HT Pinheiro;Nature,2017

5. In the light of evolution X: Comparative phylogeography;JC Avise;Proc Natl Acad Sci,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3