Abstract
Spatial analysis extracts meaning and insights from spatially referenced data, where the results are highly dependent on the quality of the data used and the manipulations on the data when preparing it for analysis. Users should understand the impacts that data representations may have on their results in order to prevent distortions in their outcomes. We study the consequences of two common data preparations when locating a linear feature performing shortest path analysis on raster terrain data: 1) the connectivity of the network generated by connecting raster cells to their neighbors, and 2) the range of the attribute scale for assigning costs. Such analysis is commonly used to locate transmission lines, where the results could have major implications on project cost and its environmental impact. Experiments in solving biobjective shortest paths show that results are highly dependent on the parameters of the data representations, with exceedingly variable results based on the choices made in reclassifying attributes and generating networks from the raster. Based on these outcomes, we outline recommendations for ensuring geographic information system (GIS) data representations maintain analysis results that are accurate and unbiased.
Funder
Argonne National Laboratory
Publisher
Public Library of Science (PLoS)
Reference53 articles.
1. Spatial Analysis And GIS
2. How to Lie with Maps
3. Lying with maps;M Monmonier;Statistical Science,2005
4. Transmission Corridor Location Modeling;DL Huber;Journal of Transportation Engineering-Asce,1985
5. EPRI-GTC Overhead Electric Transmission Line Siting Methodology;G Houston;Technical Report,2006
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献