Validation study of Boil & Spin Malachite Green Loop Mediated Isothermal Amplification (B&S MG-LAMP) versus microscopy for malaria detection in the Peruvian Amazon

Author:

Barazorda Keare A.,Salas Carola J.,Braga Greys,Ricopa Leonila,Ampuero Julia S.,Siles Crystyan,Sanchez Juan F.,Montano Silvia,Lizewski Stephen E.,Joya Christie A.,Bishop Danett K.,Valdivia Hugo O.ORCID

Abstract

Malaria elimination efforts in Peru have dramatically reduced the incidence of cases in the Amazon Basin. To achieve the elimination, the detection of asymptomatic and submicroscopic carriers becomes a priority. Therefore, efforts should focus on tests sensitive enough to detect low-density parasitemia, deployable to resource-limited areas and affordable for large screening purposes. In this study, we assessed the performance of the Malachite–Green LAMP (MG-LAMP) using heat-treated DNA extraction (Boil & Spin; B&S MG-LAMP) on 283 whole blood samples collected from 9 different sites in Loreto, Peru and compared its performance to expert and field microscopy. A real-time PCR assay was used to quantify the parasite density. In addition, we explored a modified version of the B&S MG-LAMP for detection of submicroscopic infection in 500 samples and compared the turnaround time and cost of the MG-LAMP with microscopy. Compared to expert microscopy, the genus B&S MG-LAMP had a sensitivity of 99.4% (95%CI: 96.9%– 100%) and specificity of 97.1% (95%CI: 91.9%– 99.4%). The P. vivax specific B&S MG-LAMP had a sensitivity of 99.4% (96.6%– 100%) and specificity of 99.2% (95.5%– 100%) and the P. falciparum assay had a sensitivity of 100% (95%CI: 78.2%– 100%) and specificity of 99.3% (95%CI: 97.3%– 99.8%). The modified genus B&S MG-LAMP assay detected eight submicroscopic malaria cases (1.6%) which the species-specific assays did not identify. The turnaround time of B&S MG-LAMP was faster than expert microscopy with as many as 60 samples being processed per day by field technicians with limited training and utilizing a simple heat-block. The modified B&S MG-LAMP offers a simple and sensitive molecular test of choice for the detection of submicroscopic infections that can be used for mass screening in resources limited facilities in endemic settings nearing elimination and where a deployable test is required.

Funder

US DoD Armed Forces Health Surveillance Division (AFHSD), Global Emerging Infections Surveillance (GEIS) Branch

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference46 articles.

1. WHO. World malaria report World Health Organization. 2019: Available from: https://www.who.int/publications/i/item/9789241565721.

2. malERA: An updated research agenda for diagnostics, drugs, vaccines, and vector control in malaria elimination and eradication;mal ERARCPoTfME;PLoS medicine,2017

3. Ministerio de Salud del Perú DGdIEeSP. Plan Malaria cero—Periodo 2017–2021. Lima 2017: Available from: https://www.gob.pe/institucion/minsa/normas-legales/189846-244-2017-minsa.

4. Centro Nacional de Epidemiologia PyCdE-M. Lima- 2019: Available from: http://www.dge.gob.pe/portal/docs/vigilancia/sala/2019/SE02/malaria.pdf.

5. Situacion Epidemiologica de la Malaria en el Peru—SE 42;Ordoñez;Boletin Epidemiologico del Peru,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3