Carbon stocks of above- and belowground tree biomass in Kibate Forest around Wonchi Crater Lake, Central Highland of Ethiopia

Author:

Meragiaw MisganawORCID,Woldu Zerihun,Martinsen VegardORCID,Singh Bal Ram

Abstract

Forests play an important role in the global carbon (C) balance, but their biomass has decreased globally mainly because of deforestation and a reduction in forest cover. However, little is known about the C stock of tree biomass related to environmental factors in the remnant forest patches. Thus, the present study aimed at assessing the status of C stocks of tree biomass using an allometric equation in Kibate Forest (Ethiopia). Sixty–six plots (30×30 m) were laid out at 100 m interval distance along the altitudinal gradients in five transects. The results revealed that the highest C stocks (67.4%) per species were contributed by Juniperus procera, Ilex mitis var. mitis, Nuxia congesta, and Olea europaea subsp. cuspidata. The mean total tree biomass was 91.9 ± 10.01 Mg ha−1. The mean total C stock was 45.9 ± 5.17 Mg ha−1, out of which 38.3 ± 4.31 and 7.7 ± 0.91 Mg ha−1 were stored in above- and belowground C pools, respectively. Anthropogenic factors were negatively associated with the C-stock distribution in the study area. Thus, the status of the C stock of tree biomass related to anthropogenic factors indicates that sustainable forest management practice is needed in the study area to conserve biodiversity and mitigate climate change.

Funder

regional capacity building for sustainable natural resource management and agricultural improvement under climate change (capsnac) project

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference72 articles.

1. Carbon sequestration in tropical agroforestry systems;A Albrecht;Ecosyst Environ,2003

2. Balancing the global carbon budget;R Houghton;Annu Rev Earth Planet Sci,2007

3. Terrestrial ecosystem carbon dynamics and climate feedbacks;M Heimann;Nature,2008

4. FAO (Food and Agriculture Organization). State of the world’s forests. Rome: FAO; 2011. http://www.fao.org/3/i2000e/i2000e00.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3