Changes in precipitation and atmospheric N deposition affect the correlation between N, P and K but not the coupling of water-element in Haloxylon ammodendron

Author:

Chen Zixun,Liu Xuejun,Cui Xiaoqing,Han Yaowen,Wang GuoanORCID

Abstract

Global changes in precipitation and atmospheric N deposition affect the geochemical cycle of the element and its hydrological cycle in the ecosystem. It may also affect the relationship between plant water use efficiency (WUE) and nutrients, as well as the relationship between plant nutrients. Desert ecosystems are vulnerable to global changes. Haloxylon ammodendron is the dominant species in the Asian desert. Revealing the variations in these relationships in H. ammodendron with precipitation and N deposition will enhance our understanding of the responses of plants to global change in terms of trade-off strategies of nutrient absorption, water and element geochemical cycles in desert ecosystems. Thus, we conducted field experiments with different amounts of water and N. This study showed that WUE of H. ammodendron was not correlated with nitrogen content (N), phosphorus content (P), and potassium content (K) when water and N supply were varied (p > 0.05 for WUE vs. N, P, and K), suggesting lack of coupling between water use and nutrient economics. This result was associated with the lack of correlation between plant nutrients and gas exchang in H. ammodendron. However, water addition, N addition and the interaction between both of them all played a role in the correlation between plant N, P and K owing to their different responses to water and N supplies. This indicates that global changes in precipitation and N deposition will affect N, P and K geochemical cycles in the Asian deserts dominated by H. ammodendron, and drive changes in the relationships between plant nutrients, resulting in changes in the trade-off strategy of plant absorption of N, P, and K.

Funder

National Natural Science Foundation of China

National Basic Research Program of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3