Abstract
Primary cultures of human corneal endothelial cells (HCECs) are an important model system for studying the pathophysiology of corneal endothelium. The purpose of this study was to identify and validate an optimal primary culture model of normal and Fuchs endothelial corneal dystrophy (FECD) endothelial cells by comparing cell morphology and marker expression under different media conditions to in vivo donor tissues. Primary and immortalized HCECs, isolated from normal and FECD donors, were cultured in proliferation media (Joyce, M4, Bartakova) alone or sequentially with maturation media (F99, Stabilization 1, M5). CD56, CD73 and CD166 expressions were quantified in confluent and matured cell lines by flow cytometry. HCECs that were allowed to proliferate in Joyce’s medium followed by maturation in low-mitogen containing media yielded cells with similar morphology to corneal endothelial tissues. Elevated expression of CD56 and CD166 and low expression of CD73 correlated with regular, hexagonal-like HCEC morphology. CD56:CD73 > 2.5 was most consistent with normal HCEC morphology and mimicked corneal endothelial tissue. Immortalization of normal HCECs by hTERT transduction showed morphology and CD56:CD73 ratios similar to parental cell lines. HCECs established from FECD donors showed reduced CD56:CD73 ratios compared to normal HCECs which coincided with reduced uniformity and regularity of cell monolayers. Overall, a dual media system with Joyce’s medium for proliferation and a low-mitogen media for maturation, provided normal cultures with regular, hexagonal-like cell morphologies consistent with corneal endothelial cells in vivo. CD56:CD73 expression ratio >2.5 was predictive of in vivo-like cellular morphology.
Funder
Robert Waller Career development Award
Foundation for the National Institutes of Health
Mayo Foundation for Medical Education and Research
Publisher
Public Library of Science (PLoS)
Reference33 articles.
1. Anatomy and physiology of the cornea;DW DelMonte;J Cataract Refract Surg,2011
2. Cell cycle protein expression and proliferative status in human corneal cells;NC Joyce;Invest Ophthalmol Vis Sci,1996
3. Expression of cell cycle-associated proteins in human and rabbit corneal endothelium in situ;NC Joyce;Invest Ophthalmol Vis Sci,1996
4. The Molecular Basis of Fuchs’ Endothelial Corneal Dystrophy;J Zhang;Molecular diagnosis & therapy,2019
5. Fuchs endothelial corneal dystrophy;H Elhalis;Ocul Surf,2010
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献