Prediction of massive bleeding in pancreatic surgery based on preoperative patient characteristics using a decision tree

Author:

Wakiya TaiichiORCID,Ishido Keinosuke,Kimura Norihisa,Nagase Hayato,Kubota Shunsuke,Fujita Hiroaki,Hagiwara Yusuke,Kanda Taishu,Matsuzaka MasashiORCID,Sasaki YoshihiroORCID,Hakamada Kenichi

Abstract

Massive intraoperative blood loss (IBL) negatively influence outcomes after surgery for pancreatic ductal adenocarcinoma (PDAC). However, few data or predictive models are available for the identification of patients with a high risk for massive IBL. This study aimed to build a model for massive IBL prediction using a decision tree algorithm, which is one machine learning method. One hundred and seventy-five patients undergoing curative surgery for resectable PDAC at our facility between January 2007 and October 2020 were allocated to training (n = 128) and testing (n = 47) sets. Using the preoperatively available data of the patients (34 variables), we built a decision tree classification algorithm. Of the 175 patients, massive IBL occurred in 88 patients (50.3%). Binary logistic regression analysis indicated that alanine aminotransferase and distal pancreatectomy were significant predictors of massive IBL occurrence with an overall correct prediction rate of 70.3%. Decision tree analysis automatically selected 14 predictive variables. The best predictor was the surgical procedure. Though massive IBL was not common, the outcome of patients with distal pancreatectomy was secondarily split by glutamyl transpeptidase. Among patients who underwent PD (n = 83), diabetes mellitus (DM) was selected as the variable in the second split. Of the 21 patients with DM, massive IBL occurred in 85.7%. Decision tree sensitivity was 98.5% in the training data set and 100% in the testing data set. Our findings suggested that a decision tree can provide a new potential approach to predict massive IBL in surgery for resectable PDAC.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference39 articles.

1. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries;F Bray;CA: a cancer journal for clinicians,2018

2. Pancreatic cancer;J Kleeff;Nat Rev Dis Primers,2016

3. Surgery versus radiochemotherapy for resectable locally invasive pancreatic cancer: final results of a randomized multi-institutional trial;R Doi;Surg Today,2008

4. National failure to operate on early stage pancreatic cancer;KY Bilimoria;Ann Surg,2007

5. Pancreatic resections are not only safest but also most cost-effective when performed in a high-volume centre: A Finnish register study;R Ahola;Pancreatology,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3