Comparative transcriptome profiling of high and low oil yielding Santalum album L

Author:

Fatima TanzeemORCID,Krishnan Rangachari,Srivastava Ashutosh,Hanur Vageeshbabu S.ORCID,Rao M. Srinivasa

Abstract

East Indian Sandalwood (Santalum album L.) is highly valued for its heartwood and its oil. There have been no efforts to comparative study of high and low oil yielding genetically identical sandalwood trees grown in similar climatic condition. Thus we intend to study a genome wide transcriptome analysis to identify the corresponding genes involved in high oil biosynthesis in S. album. In this study, 15 years old S. album (SaSHc and SaSLc) genotypes were targeted for analysis to understand the contribution of genetic background on high oil biosynthesis in S. album. A total of 28,959187 and 25,598869 raw PE reads were generated by the Illumina sequencing. 2.12 million and 1.811 million coding sequences were obtained in respective accessions. Based on the GO terms, functional classification of the CDS 21262, & 18113 were assigned into 26 functional groups of three GO categories; (4,168; 3,641) for biological process (5,758;4,971) cellular component and (5,108;4,441) for molecular functions. Total 41,900 and 36,571 genes were functionally annotated and KEGG pathways of the DEGs resulted 213 metabolic pathways. In this, 14 pathways were involved in secondary metabolites biosynthesis pathway in S. album. Among 237 cytochrome families, nine groups of cytochromes were participated in high oil biosynthesis. 16,665 differentially expressed genes were commonly detected in both the accessions (SaHc and SaSLc). The results showed that 784 genes were upregulated and 339 genes were downregulated in SaHc whilst 635 upregulated 299 downregulated in SaSLc S. album. RNA-Seq results were further validated by quantitative RT-PCR. Maximum Blast hits were found to be against Vitis vinifera. From this study, we have identified additional number of cytochrome family in high oil yielding sandalwood accessions (SaHc). The accessibility of a RNA-Seq for high oil yielding sandalwood accessions will have broader associations for the conservation and selection of superior elite samples/populations for further genetic improvement program.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3