Different fixation pattern for thoracolumbar fracture of ankylosing spondylitis: A finite element analysis

Author:

Zhang Tianyu,Wang Yanhua,Zhang Peixun,Xue FengORCID,Zhang Dianying,Jiang Baoguo

Abstract

The objective of this study is to establish an ankylosing spondylitis (AS) thoracolumbar fracture finite element (FE) model and provide a proper posterior fixation choice from the biomechanical perspective. The ankylosing spondylitis T9-L5 FE model was built and the range of motion (ROM) was compared to previous studies. The L1 transverse fracture was simulated and was separately fixed by five different patterns. The pull force and yielding force of the screws, the von Mises stress of the internal fixation, and the displacement of fracture site were analyzed to evaluate the proper fixation pattern for thoracolumbar fracture of AS. ROM of AS model was obviously restricted comparing to the normal vertebral experimental data. All the fixation patterns can stabilize the fracture. At least four levels of fixation can reduce the von Mises stress of the internal fixation. Four levels fixation has a higher pull force than the six levels fixation. Skipped level fixation did not reduce the stress, pull force and yielding force. The kyphosis correction did not change the biomechanical load. At least 4 levels fixation was needed for AS thoracolumbar fracture. The cemented screws should be chosen in 4 levels fixation to increase the holding of the screws. The skipped fixation has no advantage. The kyphosis correction can be chosen after weighing the pros and cons.

Funder

Ministry of Education Key Laboratory of trauma treatment and nerve regeneration

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3