Microbial corrosion of DSS 2205 in an acidic chloride environment under continuous flow

Author:

Tran Thi Thuy TienORCID,Kannoorpatti Krishnan,Padovan Anna,Thennadil Suresh,Nguyen Khai

Abstract

Corrosion under flow conditions is a major problem in the transportation industry. Various studies have shown the direct impact of different flow rates on bacteria biofilm formation, mass transfer and resulting different corrosion behaviour of materials in neutral environments. However, little is understood on corrosion under acidic flow conditions. This study investigated the impact of an acidic artificial seawater environment containing Desulfovibrio vulgaris on DSS 2205 microbial corrosion under different velocities (0.25 m.s-1 and 0.61 m.s-1). Experiments containing no bacteria were performed as controls. Bacterial attachment was observed by optical and scanning electron microscope (SEM). Materials corrosion was assessed using open circuit potential (OCP), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. Pits formed after potentiodynamic test were observed under SEM. The largest area of bacterial attachment was found on coupons immersed at a velocity of 0.25 m.s-1; however, the corrosion rate was lower than at higher velocity. Shallow pits occurred in the metal coupons when bacteria were present, while deep pits occurred in the controls. The study indicates the positive impact of biofilm formation in corrosion prevention of materials under acidic condition. The nature of corrosion behaviour of duplex stainless is discussed.

Funder

Research Training Program

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference43 articles.

1. Biodeterioration of stone: a review;T Warscheid;Int Biodeterior Biodegradation,2000

2. Microbiologically influenced corrosion: looking to the future;HA Videla;Int Microbiol,2005

3. Understanding microbial inhibition of corrosion. A comprehensive overview;HA Videla;Int Biodeterior Biodegradation,2009

4. The era of ‘omics’ technologies in the study of microbiologically influenced corrosion;L Procópio;Biotechnol Lett,2020

5. Changes in microbial community in the presence of oil and chemical dispersant and their effects on the corrosion of API 5L steel coupons in a marine-simulated microcosm;L Procópio;Appl Microbiol Biotechnol,2020

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3