Semi-field assessment of the Gravid Aedes Trap (GAT) with the aim of controlling Aedes (Stegomyia) aegypti populations

Author:

Eiras Alvaro E.ORCID,Costa Laila H.,Batista-Pereira Luciane G.,Paixão Kelly S.,Batista Elis P. A.ORCID

Abstract

The mosquito Aedes aegypti is the main vector of arboviroses and current approaches to control this vector are not sufficiently effective. Adult traps, such as the BG-Sentinel (BGS), have been successfully used for mosquito surveillance and can also suppress vector populations. A new “passive” trap for gravid Ae. aegypti (Gravid Aedes Trap—GAT) has been shown efficient for Aedes collection and suppress Ae. albopictus populations using mass trapping techniques. Here the GAT was evaluated for the first time as a new tool to control Ae. aegypti in semi-field conditions using simulated outdoor environments (SOE). Two identical large screened chambers inside of a SOE containing different numbers and sizes of artificial breeding sites were used to assess the trapping efficiency of the GAT. One hundred mosquitoes were released into the chambers, and recapture rates evaluated after 48h. The parity status of the captured mosquitoes was also recorded. The number of eggs laid, and breeding productivity were also monitored when using different numbers and sizes of breeding sites. The BGS trap was used here as a control (gold standard) trap to compare capture rates to those of the GAT. The GAT recaptured between 50–65% of the mosquitoes independent of the number and sizes of the breeding sites in the SOEs, whereas the BGS recaptured 60–82% of the females. Both traps showed similar results regarding to the parity status of recaptured mosquitoes. Our results confirmed the effectiveness of GAT for the capture of adult female Ae. aegypti in simulated field environments. The BGS trap recaptured gravid Ae. aegypti before egg-laying in different sizes and number of breading sites, whereas the oviposition activity occurred prior to recapture mosquitoes in the GAT. Based on the results, we believe that GAT is a promising candidate for mass-trapping intervention in urban settings, but a source reduction intervention should be made prior trap deployment. Therefore, we suggest future field studies to confirm the use of GAT as a complementary tool in vector control activities.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3