Abstract
Social scientists and psychologists take interest in understanding how people express emotions and sentiments when dealing with catastrophic events such as natural disasters, political unrest, and terrorism. The COVID-19 pandemic is a catastrophic event that has raised a number of psychological issues such as depression given abrupt social changes and lack of employment. Advancements of deep learning-based language models have been promising for sentiment analysis with data from social networks such as Twitter. Given the situation with COVID-19 pandemic, different countries had different peaks where rise and fall of new cases affected lock-downs which directly affected the economy and employment. During the rise of COVID-19 cases with stricter lock-downs, people have been expressing their sentiments in social media. This can provide a deep understanding of human psychology during catastrophic events. In this paper, we present a framework that employs deep learning-based language models via long short-term memory (LSTM) recurrent neural networks for sentiment analysis during the rise of novel COVID-19 cases in India. The framework features LSTM language model with a global vector embedding and state-of-art BERT language model. We review the sentiments expressed for selective months in 2020 which covers the major peak of novel cases in India. Our framework utilises multi-label sentiment classification where more than one sentiment can be expressed at once. Our results indicate that the majority of the tweets have been positive with high levels of optimism during the rise of the novel COVID-19 cases and the number of tweets significantly lowered towards the peak. We find that the optimistic, annoyed and joking tweets mostly dominate the monthly tweets with much lower portion of negative sentiments. The predictions generally indicate that although the majority have been optimistic, a significant group of population has been annoyed towards the way the pandemic was handled by the authorities.
Publisher
Public Library of Science (PLoS)
Reference100 articles.
1. Golbeck J, Robles C, Edmondson M, Turner K. Predicting personality from twitter. In: 2011 IEEE third international conference on privacy, security, risk and trust and 2011 IEEE third international conference on social computing. IEEE; 2011. p. 149–156.
2. Quercia D, Kosinski M, Stillwell D, Crowcroft J. Our twitter profiles, our selves: Predicting personality with twitter. In: 2011 IEEE third international conference on privacy, security, risk and trust and 2011 IEEE third international conference on social computing. IEEE; 2011. p. 180–185.
3. Mining Twitter to detect hotspots in psychology;A Bittermann;Zeitschrift für Psychologie,2021
4. On building better mousetraps and understanding the human condition: Reflections on big data in the social sciences;J Lin;The ANNALS of the American Academy of Political and Social Science,2015
5. Quantifying Mental Health Signals in Twitter
Cited by
86 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献