Age-structured Jolly-Seber model expands inference and improves parameter estimation from capture-recapture data

Author:

Hostetter Nathan J.ORCID,Lunn Nicholas J.,Richardson Evan S.,Regehr Eric V.,Converse Sarah J.

Abstract

Understanding the influence of individual attributes on demographic processes is a key objective of wildlife population studies. Capture-recapture and age data are commonly collected to investigate hypotheses about survival, reproduction, and viability. We present a novel age-structured Jolly-Seber model that incorporates age and capture-recapture data to provide comprehensive information on population dynamics, including abundance, age-dependent survival, recruitment, age structure, and population growth rates. We applied our model to a multi-year capture-recapture study of polar bears (Ursus maritimus) in western Hudson Bay, Canada (2012–2018), where management and conservation require a detailed understanding of how polar bears respond to climate change and other factors. In simulation studies, the age-structured Jolly-Seber model improved precision of survival, recruitment, and annual abundance estimates relative to standard Jolly-Seber models that omit age information. Furthermore, incorporating age information improved precision of population growth rates, increased power to detect trends in abundance, and allowed direct estimation of age-dependent survival and changes in annual age structure. Our case study provided detailed evidence for senescence in polar bear survival. Median survival estimates were lower (<0.95) for individuals aged <5 years, remained high (>0.95) for individuals aged 7–22 years, and subsequently declined to near zero for individuals >30 years. We also detected cascading effects of large recruitment classes on population age structure, which created major shifts in age structure when these classes entered the population and then again when they reached prime breeding ages (10–15 years old). Overall, age-structured Jolly-Seber models provide a flexible means to investigate ecological and evolutionary processes that shape populations (e.g., via senescence, life expectancy, and lifetime reproductive success) while improving our ability to investigate population dynamics and forecast population changes from capture-recapture data.

Funder

U.S. Geological Survey (USGS) Patuxent Wildlife Research Center

Care for the Wild International

the Churchill Northern Studies Centre

Earth Rangers Foundation, Environment and Climate Change Canada

the Isdell Family Foundation, Manitoba Sustainable Development

Parks Canada Agency

Prairie Helicopters

Polar Bears International

the Schad Foundation

the Takla Foundation

University of Alberta

Wildlife Media Inc.

World Wildlife Fund Canada

North Pacific Research Board

U.S. Fish and Wildlife Service

USGS Washington Cooperative Fish and Wildlife Research Unit

University of Washington

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3