Emulative, coherent, and causal dynamics between large-scale brain networks are neurobiomarkers of Accelerated Cognitive Ageing in epilepsy

Author:

Bernas AntoineORCID,Breuer Lisanne E. M.,Aldenkamp Albert P.,Zinger Svitlana

Abstract

Accelerated cognitive ageing (ACA) is an ageing co-morbidity in epilepsy that is diagnosed through the observation of an evident IQ decline of more than 1 standard deviation (15 points) around the age of 50 years old. To understand the mechanism of action of this pathology, we assessed brain dynamics with the use of resting-state fMRI data. In this paper, we present novel and promising methods to extract brain dynamics between large-scale resting-state networks: the emulative power, wavelet coherence, and granger causality between the networks were extracted in two resting-state sessions of 24 participants (10 ACA, 14 controls). We also calculated the widely used static functional connectivity to compare the methods. To find the best biomarkers of ACA, and have a better understanding of this epilepsy co-morbidity we compared the aforementioned between-network neurodynamics using classifiers and known machine learning algorithms; and assessed their performance. Results show that features based on the evolutionary game theory on networks approach, the emulative powers, are the best descriptors of the co-morbidity, using dynamics associated with the default mode and dorsal attention networks. With these dynamic markers, linear discriminant analysis could identify ACA patients at 82.9% accuracy. Using wavelet coherence features with decision-tree algorithm, and static functional connectivity features with support vector machine, ACA could be identified at 77.1% and 77.9% accuracy respectively. Granger causality fell short of being a relevant biomarker with best classifiers having an average accuracy of 67.9%. Combining the features based on the game theory, wavelet coherence, Granger-causality, and static functional connectivity- approaches increased the classification performance up to 90.0% average accuracy using support vector machine with a peak accuracy of 95.8%. The dynamics of the networks that lead to the best classifier performances are known to be challenged in elderly. Since our groups were age-matched, the results are in line with the idea of ACA patients having an accelerated cognitive decline. This classification pipeline is promising and could help to diagnose other neuropsychiatric disorders, and contribute to the field of psychoradiology.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3