Magnetic resonance imaging reconstruction algorithm under complex convolutional neural network in diagnosis and prognosis of cerebral infarction

Author:

Dong Jie,Zhao Shujun,Meng Yun,Zhang Yong,Li SuxiaoORCID

Abstract

This study was to explore the application value of magnetic resonance imaging (MRI) image reconstruction model based on complex convolutional neural network (CCNN) in the diagnosis and prognosis of cerebral infarction. Two image reconstruction methods, frequency domain reconstruction network (FDRN) and image domain reconstruction network (IDRN), were introduced based on the CCNN algorithm. In addition, they were integrated to form two new MRI image reconstruction models, namely D-FDRN and D-IDRN. The peak signal to noise ratio (PSNR) value and structural similarity index measure (SSIM) value of the image were compared and analyzed before and after the integration. The MRI images of patients with cerebral infarction in the dataset were undertaken as the data source, the average diffusion coefficient (DCavg) and apparent diffusion coefficient (ADC) values of different parts of the MRI image were measured, respectively. The correlation of the vein abnormality grading (VABG) to the infarct size and the degree of stenosis of the responsible vessel was analyzed in this study. The results showed that the PSNR and SSIM values of the MRI reconstructed image of the D-IDRN algorithm based on the CCNN algorithm in this study were higher than those of other algorithms. There was a positive correlation between the VABG and the infarct size (r = 0.48 and P = 0.002), and there was a positive correlation between the VABG the degree of stenosis of the responsible vessel (r = 0.58 and P < 0.0001). The ADC value of the central area of the infarct on the affected side was significantly greatly lower than that of the normal side (P < 0.01), and the DCavg value of the central area of the infarct was much lower in contrast to the normal side (P < 0.05). It indicated that an image reconstruction algorithm constructed in this study could improve the quality of MRI images. The ADC value and DCavg value changed in the infarct central area could be used as the basis for the diagnosis of cerebral infarction. If the vein was abnormal, the patient suffered from severe vascular stenosis, large infarction area, and poorer prognosis.

Funder

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference22 articles.

1. Roles of astrocytes in cerebral infarction and related therapeutic strategies;J Ye;Zhejiang Da Xue Xue Bao Yi Xue Ban,2018

2. Clinical and Imaging Characteristics of Cerebral Infarction in Patients with Nonvalvular Atrial Fibrillation Combined with Cerebral Artery Stenosis;W Sun;J Atheroscler Thromb,2018

3. MRI of Cerebellar Infarction;LJ De Cocker;Eur Neurol,2017

4. Characterization of Brain Metabolism by Nuclear Magnetic Resonance;DP Downes;Chemphyschem,2019

5. Fast and robust segmentation of the striatum using deep convolutional neural networks;H Choi;J Neurosci Methods,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3