Phylogenetic analyses, protein modeling and active site prediction of two pathogenesis related (PR2 and PR3) genes from bread wheat

Author:

Numan Muhammad,Bukhari Shazia AnwerORCID,Rehman Mahmood-ur-,Mustafa Ghulam,Sadia Bushra

Abstract

Wheat is a major staple food and has been extensively grown around the globe. Sessile nature of plants has exposed them to a lot of biotic and abiotic stresses including fungal pathogen attack. Puccinia graminis f.sp. tritici causes stem rust in the wheat crop and leads to 70% decrease in its production. Pathogenesis-related (PR) proteins provide plants with defense against different fungal pathogens as these proteins have antifungal activities. This study was designed to screen Pakistani wheat varieties for PR2 and PR3 proteins and their in silico characterization. PR2 and PR3 genes were screened and isolated by PCR amplification from wheat variety Chenab-70 and Frontana, respectively. The nucleotide sequences of PR2 and PR3 genes were deposited in GenBank with accession numbers MT303867 and MZ766118, respectively. Physicochemical properties, secondary and tertiary structure predictions, and molecular docking of protein sequences of PR2 and PR3 were performed using different bioinformatics tools and software. PR2 and PR3 genes were identified to encode β–1,3–glucanase and chitinase proteins, respectively. Molecular docking of both PR2 and PR3 proteins with beta-glucan and chitin (i.e. their respective ligands) showed crucial amino acid residues involved in molecular interactions. Conclusively, molecular docking analysis of β–1,3–glucanase and chitinase proteins revealed crucial amino acid residues which are involved in ligand binding and important interactions which might have important role in plant defense against fungal pathogens. Moreover, the active residues in the active sties of these proteins can be identified through mutational studies and resulting information might help understanding how these proteins are involved in plant defense mechanisms.

Funder

Higher Education Commision, Pakistan

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference58 articles.

1. FOOD O (2016) The state of food and agriculture.

2. Genetic transformation of Sr22 gene in a high yielding susceptible cultivar of commercial wheat (Triticum aestivum L.);SA Bukhari;3 Biotech,2020

3. Molecular identification of stem rust resistance gene (s) from Pakistani wheat cultivars;B Shahzad;International Journal of Agriculture and Biology,2019

4. Stem rust of wheat;GL Schumann;Stem rust of wheat,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3