HAI-1 is an independent predictor of lung cancer mortality and is required for M1 macrophage polarization

Author:

Borowicz StanleyORCID,Principe Daniel R.,Dorman Matthew J.,McHenry Austin J.,Sondarva Gautam,Kumar Sandeep,Ananthanarayanan Vijayalakshmi,Simms Patricia E.,Hess Ashley,Rana Ajay

Abstract

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide. Though immune checkpoint inhibitors (ICIs) have revolutionized lung cancer therapy in recent years, there are several factors limiting the therapeutic efficacy of ICI-based immunotherapy in lung cancer. Recent evidence suggests that one such mechanism is the phenotypic shift of tumor-infiltrating macrophages away from an anti-tumor M1 phenotype and towards an anti-inflammatory and tumor-permissive M2 phenotype. Though this phenomenon is well documented, the means through which the lung tumor microenvironment (TME) usurps macrophage function are poorly described. Hepatocyte growth factor (HGF) is a known driver of both lung cancer pathobiology as well as M2 polarization, and its signaling is antagonized by the tumor suppressor gene HAI-1 (SPINT1). Using a combination of genomic databases, primary NSCLC specimens, and in vitro models, we determined that patients with loss of HAI-1 have a particularly poor prognosis, hallmarked by increased HGF expression and an M2-dominant immune infiltrate. Similarly, conditioned media from HAI-1-deficient tumor cells led to a loss of M1 and increased M2 polarization in vitro, and patient NSCLC tissues with loss of HAI-1 showed a similar loss of M1 macrophages. Combined, these results suggest that loss of HAI-1 is a potential means through which tumors acquire an immunosuppressive, M2-dominated TME, potentially through impaired M1 macrophage polarization. Hence, HAI-1 status may be informative when stratifying patients that may benefit from therapies targeting the HGF pathway, particularly as an adjuvant to ICI-based immunotherapy.

Funder

National Institutes of Health

U.S. Department of Veterans Affairs

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3