Long-term changes in populations of rainforest birds in the Australia Wet Tropics bioregion: A climate-driven biodiversity emergency

Author:

Williams Stephen E.ORCID,de la Fuente Alejandro

Abstract

Many authors have suggested that the vulnerability of montane biodiversity to climate change worldwide is significantly higher than in most other ecosystems. Despite the extensive variety of studies predicting severe impacts of climate change globally, few studies have empirically validated the predicted changes in distribution and population density. Here, we used 17 years (2000–2016) of standardised bird monitoring across latitudinal/elevational gradients in the rainforest of the Australian Wet Tropics World Heritage Area to assess changes in local abundance and elevational distribution. We used relative abundance in 1977 surveys across 114 sites ranging from 0-1500m above sea level and utilised a trend analysis approach (TRIM) to investigate elevational shifts in abundance of 42 species. The local abundance of most mid and high elevation species has declined at the lower edges of their distribution by >40% while lowland species increased by up to 190% into higher elevation areas. Upland-specialised species and regional endemics have undergone dramatic population declines of almost 50%. The “Outstanding Universal Value” of the Australian Wet Tropics World Heritage Area, one of the most irreplaceable biodiversity hotspots on Earth, is rapidly degrading. These observed impacts are likely to be similar in many tropical montane ecosystems globally.

Funder

James Cook University

Department of the Environment, Australian Government

Earthwatch Australia

Wet Tropics Management Authority

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference86 articles.

1. IPCC CC. Mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. 2014.

2. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being;G Pecl;Science,2017

3. Climate change. Accelerating extinction risk from climate change;M. Urban;Science,2015

4. Extinction risk from climate change;C Thomas;Nature,2004

5. Climate change in Australian tropical rainforests: an impending environmental catastrophe;SE Williams;Proceedings of the Royal Society of London Series B: Biological Sciences,2003

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3