Beyond body size—new traits for new heights in trait-based modelling of predator-prey dynamics

Author:

Wootton Kate L.ORCID,Curtsdotter Alva,Jonsson Tomas,Banks H. T.,Bommarco Riccardo,Roslin Tomas,Laubmeier Amanda N.

Abstract

Food webs map feeding interactions among species, providing a valuable tool for understanding and predicting community dynamics. Using species’ body sizes is a promising avenue for parameterizing food-web models, but such approaches have not yet been able to fully recover observed community dynamics. Such discrepancies suggest that traits other than body size also play important roles. For example, differences in species’ use of microhabitat or non-consumptive effects of intraguild predators may affect dynamics in ways not captured by body size. In Laubmeier et al. (2018), we developed a dynamic food-web model incorporating microhabitat and non-consumptive predator effects in addition to body size, and used simulations to suggest an optimal sampling design of a mesocosm experiment to test the model. Here, we perform the mesocosm experiment to generate empirical time-series of insect herbivore and predator abundance dynamics. We minimize least squares error between the model and time-series to determine parameter values of four alternative models, which differ in terms of including vs excluding microhabitat use and non-consumptive predator-predator effects. We use both statistical and expert-knowledge criteria to compare the models and find including both microhabitat use and non-consumptive predator-predator effects best explains observed aphid and predator population dynamics, followed by the model including microhabitat alone. This ranking suggests that microhabitat plays a larger role in driving population dynamics than non-consumptive predator-predator effects, although both are clearly important. Our results illustrate the importance of additional traits alongside body size in driving trophic interactions. They also point to the need to consider trophic interactions and population dynamics in a wider community context, where non-trophic impacts can dramatically modify the interplay between multiple predators and prey. Overall, we demonstrate the potential for utilizing traits beyond body size to improve trait-based models and the value of iterative cycling between theory, data and experiment to hone current insights into how traits affect food-web dynamics.

Funder

SLU August T. Larsson Guest Researcher Programme

Vetenskapsrådet

Svenska Forskningsrådet Formas

Air Force Office of Scientific Research

National Science Foundation

Swedish University of Agricultural Sciences, Faculty of Natural Resources and Agricultural Sciences

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3