Classifying muscle parameters with artificial neural networks and simulated lateral pinch data

Author:

Kearney Kalyn M.ORCID,Harley Joel B.,Nichols Jennifer A.ORCID

Abstract

Objective Hill-type muscle models are widely employed in simulations of human movement. Yet, the parameters underlying these models are difficult or impossible to measure in vivo. Prior studies demonstrate that Hill-type muscle parameters are encoded within dynamometric data. But, a generalizable approach for estimating these parameters from dynamometric data has not been realized. We aimed to leverage musculoskeletal models and artificial neural networks to classify one Hill-type muscle parameter (maximum isometric force) from easily measurable dynamometric data (simulated lateral pinch force). We tested two neural networks (feedforward and long short-term memory) to identify if accounting for dynamic behavior improved accuracy. Methods We generated four datasets via forward dynamics, each with increasing complexity from adjustments to more muscles. Simulations were grouped and evaluated to show how varying the maximum isometric force of thumb muscles affects lateral pinch force. Both neural networks classified these groups from lateral pinch force alone. Results Both neural networks achieved accuracies above 80% for datasets which varied only the flexor pollicis longus and/or the abductor pollicis longus. The inclusion of muscles with redundant functions dropped model accuracies to below 30%. While both neural networks were consistently more accurate than random guess, the long short-term memory model was not consistently more accurate than the feedforward model. Conclusion Our investigations demonstrate that artificial neural networks provide an inexpensive, data-driven approach for approximating Hill-type muscle-tendon parameters from easily measurable data. However, muscles of redundant function or of little impact to force production make parameter classification more challenging.

Funder

National Science Foundation

national center for advancing translational sciences

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference44 articles.

1. The heat of shortening and the dynamic constants of muscle;A V Hill;Proc R Soc London Ser B—Biol Sci,1938

2. The series elastic component of muscle;A V Hill;Proc R Soc Lond B Biol Sci,1950

3. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control;FE Zajac;Critical reviews in biomedical engineering,1989

4. The isometric functional capacity of muscles that cross the elbow;WM Murray;J Biomech,2000

5. Muscle architecture of the human lower limb;TL Wickiewicz;Clin Orthop Relat Res,1983

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3