ACCU3RATE: A mobile health application rating scale based on user reviews

Author:

Biswas MilonORCID,Tania Marzia HoqueORCID,Kaiser M. Shamim,Kabir RussellORCID,Mahmud MuftiORCID,Kemal Atika Ahmad

Abstract

Background Over the last decade, mobile health applications (mHealth App) have evolved exponentially to assess and support our health and well-being. Objective This paper presents an Artificial Intelligence (AI)-enabled mHealth app rating tool, called ACCU3RATE, which takes multidimensional measures such as user star rating, user review and features declared by the developer to generate the rating of an app. However, currently, there is very little conceptual understanding on how user reviews affect app rating from a multi-dimensional perspective. This study applies AI-based text mining technique to develop more comprehensive understanding of user feedback based on several important factors, determining the mHealth app ratings. Method Based on the literature, six variables were identified that influence the mHealth app rating scale. These factors are user star rating, user text review, user interface (UI) design, functionality, security and privacy, and clinical approval. Natural Language Toolkit package is used for interpreting text and to identify the App users’ sentiment. Additional considerations were accessibility, protection and privacy, UI design for people living with physical disability. Moreover, the details of clinical approval, if exists, were taken from the developer’s statement. Finally, we fused all the inputs using fuzzy logic to calculate the new app rating score. Results and conclusions ACCU3RATE concentrates on heart related Apps found in the play store and App gallery. The findings indicate the efficacy of the proposed method as opposed to the current device scale. This study has implications for both App developers and consumers who are using mHealth Apps to monitor and track their health. The performance evaluation shows that the proposed mHealth scale has shown excellent reliability as well as internal consistency of the scale, and high inter-rater reliability index. It has also been noticed that the fuzzy based rating scale, as in ACCU3RATE, matches more closely to the rating performed by experts.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference106 articles.

1. Valuable features in mobile health apps for patients and consumers: content analysis of apps and user ratings;MF Mendiola;JMIR mHealth and uHealth,2015

2. Effect of self-monitoring on long-term patient engagement with mobile health applications;K Lee;PloS one,2018

3. Forecasting major impacts of COVID-19 pandemic on country-driven sectors: challenges, lessons, and future roadmap;S Kumar;Personal and Ubiquitous Computing,2021

4. iWorkSafe: towards healthy workplaces during COVID-19 with an intelligent pHealth App for industrial settings;MS Kaiser;IEEE Access,2021

5. Frost D, Mahmud M. Strengthening Health Systems in Low-Income Countries: A Stakeholder Engagement Framework. EGOV-CeDEM-ePart 2020. 2020; p. 215.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3