Abstract
Although most birds show karyotypes with diploid number (2n) around 80, with few macrochromosomes and many microchromosomes pairs, some groups, such as the Accipitriformes, are characterized by a large karyotypic reorganization, which resulted in complements with low diploid numbers, and a smaller number of microchromosomal pairs when compared to other birds. Among Accipitriformes, the Accipitridae family is the most diverse and includes, among other subfamilies, the subfamily Aquilinae, composed of medium to large sized species. The Black-Hawk-Eagle (Spizaetus tyrannus-STY), found in South America, is a member of this subfamily. Available chromosome data for this species includes only conventional staining. Hence, in order to provide additional information on karyotype evolution process within this group, we performed comparative chromosome painting between S. tyrannus and Gallus gallus (GGA). Our results revealed that at least 29 fission-fusion events occurred in the STY karyotype, based on homology with GGA. Fissions occurred mainly in syntenic groups homologous to GGA1-GGA5. On the other hand, the majority of the microchromosomes were found fused to other chromosomal elements in STY, indicating these rearrangements played an important role in the reduction of the 2n to 68. Comparison with hybridization pattern of the Japanese-Mountain-Eagle (Nisaetus nipalensis orientalis), the only Aquilinae analyzed by comparative chromosome painting previously, did not reveal any synapomorphy that could represent a chromosome signature to this subfamily. Therefore, conclusions about karyotype evolution in Aquilinae require additional painting studies.
Funder
CNPq
Wellcome Trust
Biotechnology and Biological Sciences Research Council
Fundação para a Ciência e a Tecnologia
PROPESP/UFPA
Publisher
Public Library of Science (PLoS)
Reference23 articles.
1. Description of two new karyotypes and cytotaxonomic considerations on Falconiformes;M. M. Tagliarini;Brazilian J Ornit,2007
2. The somatic chromosomes of 16 species of Falconiformes (Aves) and the karyological relationships of the order;L. E. M. De Boer;Genetica,1990
3. The somatic chromosome complements of 16 species of Falconiformes (Aves) and the karyological relationships of the order;L.E.M. De Boer;Genetica,1976
4. Revisão de dados citogenéticos sobre a avifauna brasileira;L. P. Santos;Brazilian J Ornith,2006
5. Karyotype Evolution in Birds: From Conventional Staining to Chromosome Painting;R. Kretschmer;Genes,2018
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献