A finite volume-based model for the hydrothermal behavior of soil under freeze–thaw cycles

Author:

Hu Tianfei,Wang TengfeiORCID

Abstract

Freeze–thaw cycles in soil are driven by water migration, phase transitions, and heat transfer, which themselves are closely coupled variables in the natural environment. To simulate this complex periglacial process at different time and length scales, a multi-physics model was established by solving sets of equations describing fluid flow and heat transfer, and a dynamic equilibrium equation for phase changes in moisture. This model considers the effects of water–ice phase changes on the hydraulic and thermal properties of soil and the effect of latent heat during phase transition. These equations were then discretized by using the finite volume method and solved using iteration. The open-source software OpenFOAM was used to generate computational code for simulation of coupled heat and fluid transport during freezing and thawing of soil. A set of laboratory freezing tests considering two thermal boundary conditions were carried out, of which the results were obtained to verify the proposed model. In general, the numerical solutions agree well with the measured data. A railway embankment problem, incorporating soil hydrothermal behavior in response to seasonal variations in surface temperature, was finally solved with the finite volume-based approach, indicating the algorithm’s robustness and flexibility.

Funder

National Natural Science Foundation of China

Science and Technology Research Project of Hebei Education Department, China

Natural Science Foundation of Hebei Province

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3