Why it is important to consider negative ties when studying polarized debates: A signed network analysis of a Dutch cultural controversy on Twitter

Author:

Keuchenius AnnaORCID,Törnberg Petter,Uitermark Justus

Abstract

Despite the prevalence of disagreement between users on social media platforms, studies of online debates typically only look at positive online interactions, represented as networks with positive ties. In this paper, we hypothesize that the systematic neglect of conflict that these network analyses induce leads to misleading results on polarized debates. We introduce an approach to bring in negative user-to-user interaction, by analyzing online debates using signed networks with positive and negative ties. We apply this approach to the Dutch Twitter debate on ‘Black Pete’—an annual Dutch celebration with racist characteristics. Using a dataset of 430,000 tweets, we apply natural language processing and machine learning to identify: (i) users’ stance in the debate; and (ii) whether the interaction between users is positive (supportive) or negative (antagonistic). Comparing the resulting signed network with its unsigned counterpart, the retweet network, we find that traditional unsigned approaches distort debates by conflating conflict with indifference, and that the inclusion of negative ties changes and enriches our understanding of coalitions and division within the debate. Our analysis reveals that some groups are attacking each other, while others rather seem to be located in fragmented Twitter spaces. Our approach identifies new network positions of individuals that correspond to roles in the debate, such as leaders and scapegoats. These findings show that representing the polarity of user interactions as signs of ties in networks substantively changes the conclusions drawn from polarized social media activity, which has important implications for various fields studying online debates using network analysis.

Funder

Horizon 2020 Framework Programme

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference66 articles.

1. Manifesto of computational social science;R Conte;The European Physical Journal: Special Topics,2012

2. Life in the network: the coming age of computational social science;D Lazer;Science,2009

3. Computational social science: Obstacles and opportunities;DMJ Lazer;Science,2009

4. Mobilizing the Masses: Measuring Resource Mobilization on Twitter;A Abdul Reda;Sociological Methods and Research,2021

5. Broadcasters and Hidden Influentials in Online Protest Diffusion;S González-Bailón;American Behavioral Scientist,2013

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3