A systematic scoping review of the methodological approaches and effects of pesticide exposure on solitary bees

Author:

Lehmann David M.ORCID,Camp Allison A.

Abstract

Background Pollination services provided by solitary bees, the largest group of bees worldwide, are critical to the vitality of ecosystems and agricultural systems alike. Disconcertingly, bee populations are in decline, and while no single causative factor has been identified, pesticides are believed to play a role in downward population trends. The effects of pesticides on solitary bee species have not been previously systematically cataloged and reviewed. Objectives This systematic scoping review examines available evidence for effects of pesticide exposure on solitary bees to identify data gaps and priority research needs. Methods A systematic literature search strategy was developed to identify and document reports on solitary bee pesticide exposure-effects investigations. Literature was subsequently screened for relevance using a Population, Exposures, Comparators, and Outcomes (PECO) statement and organized into a systematic evidence map. Investigations were organized by effect category (lethal effects on immatures, lethal effects on adults, sublethal effects on immatures, and sublethal effects on adults), species, pesticide class, and publication year. Results A comprehensive literature search of Web of Science and ProQuest Agricultural & Environmental Science supplemented by targeted internet searching and reference mining yielded 176 reports and publications for title and abstract screening and 65 that met PECO criteria (22 included lethal and 43 included sublethal effects endpoints). Relevant design details (pesticide, test compound configuration, study type, species, sex, exposure duration) were extracted into literature inventory tables to reveal the extent endpoints have been investigated and areas in need of additional research. Conclusions Evidence mapping revealed diversity in the pesticides and endpoints studied across the database. However, dilution across bee species, lack of complementary laboratory work and paucity of replicated investigations complicate efforts to interpret and apply available data to support pesticide risk assessment.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference109 articles.

1. Pesticide exposure assessment paradigm for solitary bees;F Sgolastra;Environmental Entomology,2019

2. Functional diversity of plant-pollinator interaction webs enhances the persistence of plant communities;C Fontaine;PLoS Biology,2006

3. Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function;LA Burkle;Science,2013

4. Partitioning wild bee and hoverfly contributions to plant-pollinator network structure in fragmented habitats;F Jauker;Ecology,2019

5. Pollination effectiveness and pollination efficiency of insects foraging Prosopis velutinain south-eastern Arizona;RN Keys;Journal of Applied Ecology,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3