Validation of a novel FRET real-time PCR assay for simultaneous quantitative detection and discrimination of human Plasmodium parasites

Author:

Schneider Renate,Lamien-Meda Aline,Auer Herbert,Wiedermann-Schmidt Ursula,Chiodini Peter L.,Walochnik JuliaORCID

Abstract

Increasing numbers of travelers returning from endemic areas, migrants, and refugees have led to a significant rise in the number of imported malaria cases in non-endemic countries. Real- time PCR serves as an excellent diagnostic tool, especially in regions where experience in microscopy is limited. A novel fluorescence resonance energy transfer-based real-time PCR (FRET-qPCR) was developed and evaluated using 56 reference samples of the United Kingdom National External Quality Assessment Service (UK NEQAS) for molecular detection of malaria, including P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi. Species identification is based on single nucleotide polymorphisms (SNPs) within the genome where the MalLC640 probe binds, lowering the melting temperature in the melting curve analysis. The novel FRET-qPCR achieved 100% (n = 56) correct results, compared to 96.43% performing nested PCR. The high sensitivity, with a calculated limit of detection of 199.97 parasites/mL blood for P. falciparum, is a significant advantage, especially if low-level parasitemia has to be ruled out. Even mixed infections of P. falciparum with P. vivax or P. ovale, respectively, were detected. In contrast to many other real-time PCR protocols, this novel FRET-qPCR allows the quantitative and species-specific detection of Plasmodium spp. in one single run. Solely, P. knowlesi was detected but could not be differentiated from P. vivax. The turnaround time of this novel FRET-qPCR including DNA extraction is less than two hours, qualifying it for routine clinical applications, including treatment monitoring.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3