Chloroplast genome features of Moricandia arvensis (Brassicaceae), a C3-C4 intermediate photosynthetic species

Author:

Zhu BinORCID,Hu Lijuan,Qian Fang,Gao Zuomin,Gan Chenchen,Liu Zhaochao,Du Xuye,Wang HongchengORCID

Abstract

Moricandia arvensis, a plant species originating from the Mediterranean, has been classified as a rare C3-C4 intermediate species, and it is a possible bridge during the evolutionary process from C3 to C4 plant photosynthesis in the family Brassicaceae. Understanding the genomic structure, gene order, and gene content of chloroplasts (cp) of such species can provide a glimpse into the evolution of photosynthesis. In the present study, we obtained a well-annotated cp genome of M. arvensis using long PacBio and short Illumina reads with a de novo assembly strategy. The M. arvensis cp genome was a quadripartite circular molecule with the length of 153,312 bp, including two inverted repeats (IR) regions of 26,196 bp, divided by a small single copy (SSC) region of 17,786 bp and a large single copy (LSC) region of 83,134 bp. We detected 112 unigenes in this genome, comprising 79 protein-coding genes, 29 tRNAs, and four rRNAs. Forty-nine long repeat sequences and 51 simple sequence repeat (SSR) loci of 15 repeat types were identified. The analysis of Ks (synonymous) and Ka (non-synonymous) substitution rates indicated that the genes associated with “subunits of ATP synthase” (atpB), “subunits of NADH-dehydrogenase” (ndhG and ndhE), and “self-replication” (rps12 and rpl16) showed relatively higher Ka/Ks values than those of the other genes. The gene content, gene order, and LSC/IR/SSC boundaries and adjacent genes of the M. arvensis cp genome were highly conserved compared to those in related C3 species. Our phylogenetic analysis demonstrated that M. arvensis was clustered into a subclade with cultivated Brassica species and Raphanus sativus, indicating that M. arvensis was not involved in an independent evolutionary origin event. These results will open the way for further studies on the evolutionary process from C3 to C4 photosynthesis and hopefully provide guidance for utilizing M. arvensis as a resource for improvinng photosynthesis efficiency in cultivated Brassica species.

Funder

National Natural Science Foundation of China,

Guizhou Provincial Science and Technology Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3