Floor vibrations for motivation and feedback in the rat vibration actuating search task

Author:

Lawrence-Sidebottom Darian,Schmidt Michelle A.,Harvey Daniel O.,Van Dongen Hans P. A.,Davis Christopher J.ORCID

Abstract

Motivating rodents to perform cognitive tasks often relies on the application of aversive stimuli. The Vibration Actuating Search Task (VAST) is a novel open-field task in which gradient floor vibration provides motivation for the rodent to navigate in the direction of diminishing vibration to an unmarked target destination. Using floor vibration as a motivational stimulus may overcome several of the potential confounds associated with stimuli used in other tasks. In a series of three experiments, we determined whether (1) rats exhibit place preference for floor vibration over other aversive stimuli (i.e., water, foot shock, and bright light), (2) exposure to floor vibration is associated with a lower corticosterone response than exposure to these other stimuli, (3) rats successfully acquire the VAST, and (4) VAST performance is sensitive to 6 h of sleep deprivation (SD). Our results showed that rats exhibited place preference for vibration over water, foot shock, and bright light environments, and that corticosterone levels were lower in rats exposed to vibration than those exposed to water. VAST performance also significantly improved over two days of testing for some metrics, and SD impaired VAST performance. Overall, we conclude that (1) rats exhibit place preference for vibration over other stimuli commonly used to motivate task performance, (2) the vibrations employed by the VAST produce lower concentrations of circulating corticosterone than forced swimming, (3) rats can learn to use gradient floor vibration as a mode of performance feedback within two days of testing, and (4) VAST performance is substantially impaired by SD. Thus, the VAST is an effective and practical testbed for studying the mechanisms by which SD causes deficits in feedback-dependent decision making.

Funder

National Institute of Neurological Disorders and Stroke

U.S. Army Medical Research and Development Comman

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3