Fully automatic image colorization based on semantic segmentation technology

Author:

Xu Min,Ding YouDong

Abstract

Aiming at these problems of image colorization algorithms based on deep learning, such as color bleeding and insufficient color, this paper converts the study of image colorization to the optimization of image semantic segmentation, and proposes a fully automatic image colorization model based on semantic segmentation technology. Firstly, we use the encoder as the local feature extraction network and use VGG-16 as the global feature extraction network. These two parts do not interfere with each other, but they share the low-level feature. Then, the first fusion module is constructed to merge local features and global features, and the fusion results are input into semantic segmentation network and color prediction network respectively. Finally, the color prediction network obtains the semantic segmentation information of the image through the second fusion module, and predicts the chrominance of the image based on it. Through several sets of experiments, it is proved that the performance of our model becomes stronger and stronger under the nourishment of the data. Even in some complex scenes, our model can predict reasonable colors and color correctly, and the output effect is very real and natural.

Funder

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference48 articles.

1. The Development and Application of Colorization;W Markle;SMPTE Journal,1984

2. Horiuchi T, Hirano S. Colorization algorithm for grayscale image by propagating seed pixels. Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429). IEEE, 2003; Vol.1, pp. I-457.

3. Heu J H, Hyun D Y, Kim C S, et al. Image and video colorization based on prioritized source propagation. 2009 16th IEEE international conference on image processing (ICIP). IEEE, 2009; pp.465-468.

4. Transferring Color to Greyscale Images;T Welsh;Acm Transactions on Graphics,2002

5. Texture-Aware Emotional Color Transfer Between Images;S Liu;IEEE Access,2018

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3