Exogenous proanthocyanidins improve tolerance of Cu-toxicity by amelioration of oxidative damage and re-programming of gene expression in Medicago sativa

Author:

Zhao Siyi,Zhu Yanqiao,Liu Wenwen,Wang Xiaoshan,Wang Han,Cao Yingping,Chen Fei,Hu Longxing,Gong Lixia,Fu Chunxiang,Zhang Zhifei

Abstract

Excess copper (Cu) in soil due to industrial and agricultural practices can result in reduced plant growth. Excess Cu resulted in severely retarded root growth with severe discoloration of Alfalfa (Medicago sativa) and Medicago truncatula. Growth in the presence of hydrogen peroxide resulted in similar symptoms that could be partially recovered by the addition of the reductant ascorbic acid revealing damage was likely due to oxidative stress. The addition of proanthocyanidins (PAs) in the presence of Cu prevented much of the damage, including plant growth and restoration of lignin synthesis which was inhibited in the presence of excess Cu. Transcriptome analyses of the impact of excess Cu and the amelioration after PAs treatment revealed that changes were enriched in functions associated with the cell wall and extracellular processes, indicating that inhibition of cell wall synthesis was likely the reason for retarded growth. Excess Cu appeared to induce a strong defense response, along with alterations in the expression of a number of genes encoding transcription factors, notably related to ethylene signaling. The addition of PAs greatly reduced this response, and also induced novel genes that likely help ameliorate the effects of excess Cu. These included induction of genes involved in the last step of ascorbic acid biosynthesis and of enzymes involved in cell wall synthesis. Combined, these results show that excess Cu causes severe oxidative stress damage and inhibition of cell wall synthesis, which can be relieved by the addition of PAs.

Funder

Agricultural Variety Improvement Project of Shandong Province

Major Program of Shandong Province Natural Science Foundation

Special Funds for the Construction of Innovative Provinces in Hunan

National Natural Science Foundation of China

National Key P & D Program of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3