Source apportionment and quantification of liquid and headspace leaks from closed system drug-transfer devices via Selected Ion Flow Tube Mass Spectrometry (SIFT-MS)

Author:

Doepke AmosORCID,Streicher Robert P.

Abstract

A system to differentiate and quantify liquid and headspace vapor leaks from closed system drug-transfer devices (CSTDs) is presented. CSTDs are designed to reduce or eliminate hazardous drug (HD) exposure risk when compounding and administering HDs. CSTDs may leak liquid, headspace, or a mixture of the two. The amount of HD contained in liquid and headspace leaks may be substantially different. Use of a test solution containing two VOCs with differences in ratios of VOC concentrations in the headspace and liquid enables source apportionment of leaked material. SIFT-MS was used to detect VOCs from liquid and headspace leaks in the vapor phase. Included in this report is a novel method to determine the origin and magnitude of leaks from CSTDs. A limit of leak detection of 24 μL of headspace vapor and 0.14 μL of test liquid were found using Selected Ion Flow Tube Mass Spectrometry (SIFT-MS).

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference26 articles.

1. NIOSH. Preventing Occupational Exposures to Antineoplastic and Other Hazardous Drugs in Health Care Settings. 2004; DHHS (NIOSH) Publication Number 2004−165.

2. Hirst DV, Mead KR, Power L, Kastango E, Kovein R, Nue D, et al. A Vapor Containment Performance Protocol for Closed System Transfer Devices Used During Pharmacy Compounding and Administration of Hazardous Drugs. Draft, 2015; NIOSH Docket Number 288, CDC-2015-0075.

3. Hirst DV, Mead KR, Power L, Kastango E, Connor T, DeBord G, et al. A Performance Test Protocol for Closed System Transfer Devices Used During Pharmacy Compounding and Administration of Hazardous Drugs. Draft, 2016; NIOSH Docket Number 288-A, CDC-2016-0090.

4. NIOSH Definition of Closed-System Drug-Transfer Devices;O Nygren;Ann Occup Hyg,2009

5. The United States Pharmacopeial Convention. USP 800 Hazardous Drugs—Handling in Healthcare Settings. 2019; C225594-M7808-CHM2015 rev. 01 20190927.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3