Glutathione, carbohydrate and other metabolites of Larix olgensis A. Henry reponse to polyethylene glycol-simulated drought stress

Author:

Zhang Lei,Yan Shanshan,Zhang Sufang,Yan Pingyu,Wang Junhui,Zhang HanguoORCID

Abstract

Drought stress in trees limits their growth, survival, and productivity and it negatively affects the afforestation survival rate. Our study focused on the molecular responses to drought stress in a coniferous species Larix olgensis A. Henry. Drought stress was simulated in one-year-old seedlings using 25% polyethylene glycol 6000. The drought stress response in these seedlings was assessed by analyzing select biochemical parameters, along with gene expression and metabolite profiles. The soluble protein content, peroxidase activity, and malondialdehyde content of L. olgensis were significantly changed during drought stress. Quantitative gene expression analysis identified a total of 8172 differentially expressed genes in seedlings processed after 24 h, 48 h, and 96 h of drought stress treatment. Compared with the gene expression profile of the untreated control, the number of up-regulated genes was higher than that of down-regulated genes, indicating that L. olgensis mainly responded to drought stress through positive regulation. Metabolite analysis of the control and stress-treated samples showed that under drought stress, the increased abundance of linoleic acid was the highest among up-regulated metabolites, which also included some saccharides. A combined analysis of the transcriptome and metabolome revealed that genes dominating the differential expression profile were involved in glutathione metabolism, galactose metabolism, and starch and sucrose metabolism. Moreover, the relative abundance of specific metabolites of these pathways was also altered. Thus, our results indicated that L. olgensis prevented free radical-induced damage through glutathione metabolism and responded to drought through sugar accumulation.

Funder

the National Science and Technology Major Project

the National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3