Effects of climate changes and road exposure on the rapidly rising legionellosis incidence rates in the United States

Author:

Han Xiang Y.ORCID

Abstract

Legionellosis is an infection acquired through inhalation of aerosols that are contaminated with environmental bacteria Legionella spp. The bacteria require warm temperature for proliferation in bodies of water and moist soil. The legionellosis incidence in the United States has been rising rapidly in the past two decades without a clear explanation. In the meantime, the US has recorded consecutive years of above-norm temperature since 1997 and precipitation surplus since 2008. The present study analyzed the legionellosis incidence in the US during the 20-year period of 1999 to 2018 and correlated with concurrent temperature, precipitation, solar ultraviolet B (UVB) radiation, and vehicle mileage data. The age-adjusted legionellosis incidence rates rose exponentially from 0.40/100,000 in 1999 (with 1108 cases) to 2.69/100,000 in 2018 (with 9933 cases) at a calculated annual increase of 110%. In regression analyses, the rise correlated with an increase in vehicle miles driven and with temperature and precipitation levels that have been above the 1901–2000 mean since 1997 and 2008, respectively, suggesting more road exposure to traffic-generated aerosols and promotive effects of anomalous climate. Remarkably, the regressions with cumulative anomalies of temperature and precipitation were robust (R2 ≥ 0.9145, P ≤ 4.7E-11), implying possible changes to microbial ecology in the terrestrial and aquatic environments. An interactive synergy between annual precipitation and vehicle miles was also found in multiple regressions. Meanwhile, the bactericidal UVB radiation has been decreasing, which also contributed to the rising incidence in an inverse correlation. The 2018 legionellosis incidence peak corresponded to cumulative effects of the climate anomalies, vast vehicle miles (3,240 billion miles, 15904 km per capita), record high precipitation (880.1 mm), near record low UVB radiation (7488 kJ/m2), and continued above-norm temperature (11.96°C). These effects were examined and demonstrated in California, Florida, New Jersey, Ohio, and Wisconsin, states that represent diverse incidence rates and climates. The incidence and above-norm temperature both rose most in cold Wisconsin. These results suggest that warming temperature and precipitation surplus have likely elevated the density of Legionella bacteria in the environment, and together with road exposure explain the rapidly rising incidence of legionellosis in the United States. These trends are expected to continue, warranting further research and efforts to prevent infection.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3