Saffron extract attenuates neuroinflammation in rmTBI mouse model by suppressing NLRP3 inflammasome activation via SIRT1

Author:

Shaheen Mariam J.,Bekdash Amira M.,Itani Hana A.,Borjac Jamilah M.ORCID

Abstract

Traumatic brain injury (TBI) remains a major cause of morbidity and disability worldwide and a healthcare burden. TBI is an important risk factor for neurodegenerative diseases hallmarked by exacerbated neuroinflammation. Neuroinflammation in the cerebral cortex plays a critical role in secondary injury progression following TBI. The NOD-like receptors (NLR) family pyrin domain containing 3 (NLRP3) inflammasome is a key player in initiating the inflammatory response in various central nervous system disorders entailing TBI. This current study aims to investigate the role of NLRP3 in repetitive mild traumatic brain injury (rmTBI) and identify the potential neuroprotective effect of saffron extract in regulating the NLRP3 inflammasome. 24 hours following the final injury, rmTBI causes an upregulation in mRNA levels of NLRP3, caspase-1, the apoptosis-associated speck-like protein containing a CARD (ASC), nuclear factor kappa B (NF-κB), interleukin-1Beta (IL-1β), interleukin 18 (IL-18), nuclear factor erythroid 2–related factor 2 (NRF2) and heme oxygenase 1 (HMOX1). Protein levels of NLRP3, sirtuin 1 (SIRT1), glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule 1 (Iba1), and neuronal nuclei (Neu N) also increased after rmTBI. Administration of saffron alleviated the degree of TBI, as evidenced by reducing the neuronal damage, astrocyte, and microglial activation. Pretreatment with saffron inhibited the activation of NLRP3, caspase-1, and ASC concurrent to reduced production of the inflammatory cytokines IL-1β and IL-18. Additionally, saffron extract enhanced SIRT1 expression, NRF2, and HMOX1 upregulation. These results suggest that NLRP3 inflammasome activation and the subsequent inflammatory response in the mice cortex are involved in the process of rmTBI. Saffron blocked the inflammatory response and relieved TBI by activating detoxifying genes and inhibiting NLRP3 activation. The effect of saffron on the NLRP3 inflammasome may be SIRT1 and NF-κB dependent in the rmTBI model. Thus, brain injury biomarkers will help in identifying a potential therapeutic target in treating TBI-induced neurodegenerative diseases.

Funder

aub medical practice plan fund

carl w. gottschalk research scholar award

american university of beirut faculty of medicine medical practice plan

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference93 articles.

1. Estimating the global incidence of traumatic brain injury;MC Dewan;Journal of Neurosurgery,2019

2. Consensus statement on concussion in sport: the 4th International Conference on Concussion in Sport held in Zurich, November 2012;P McCrory;British Journal of Sports Medicine,2013

3. Increasing Incidence of Concussion: True Epidemic or Better Recognition?;L Langer;Journal of Head Trauma Rehabilitation,2020

4. pharmacologic treatment of acute spinal cord injury;Kwon B. Pathophysiology;The Spine Journal,2004

5. Secondary brain injury: Predicting and preventing insults;C Lazaridis;Neuropharmacology,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3