Abstract
The analysis of the infectious titer of the lentiviral vector samples obtained during upstream and downstream processing is of major importance, however, also the most challenging method to be performed. Currently established methods like flow cytometry or qPCR lack the capability of enabling high throughput sample processing while they require a lot of manual handling. To address this limitation, we developed an immunological real-time imaging method to quantify the infectious titer of anti-CD19 CAR lentiviral vectors with a temporal readout using the Incucyte® S3 live-cell analysis system. The infective titers determined with the Incucyte® approach when compared with the flow cytometry-based assay had a lower standard deviation between replicates and a broader linear range. A major advantage of the method is the ability to obtain titer results in real-time, enabling an optimal readout time. The presented protocol significantly decreased labor and increased throughput. The ability of the assay to process high numbers of lentiviral samples in a high throughput manner was proven by performing a virus stability study, demonstrating the effects of temperature, salt, and shear stress on LV infectivity.
Funder
Sartorius Stedim Biotech GmBH
Publisher
Public Library of Science (PLoS)
Reference47 articles.
1. Retroviral vectors and transposons for stable gene therapy: advances, current challenges and perspectives;JE Vargas;J Transl Med,2016
2. Advanced therapy medicinal products: current and future perspectives;E Hanna;J Mark Access Health Policy,2016
3. Capacity analysis for viral vector manufacturing: Is there enough;J Rininger;Bioprocess Int,2019
4. CAR T-cell Therapy: A New Era in Cancer Immunotherapy;AN Miliotou;Curr Pharm Biotechnol,2018
5. Target selection for CAR-T therapy;J Wei;J Hematol Oncol,2019
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献