Exploring the diagnostic potential of adding T2 dependence in diffusion-weighted MR imaging of the prostate

Author:

Syversen Ingrid FramåsORCID,Elschot Mattijs,Sandsmark Elise,Bertilsson Helena,Bathen Tone FrostORCID,Goa Pål Erik

Abstract

Background Magnetic resonance imaging (MRI) is essential in the detection and staging of prostate cancer. However, improved tools to distinguish between low-risk and high-risk cancer are needed in order to select the appropriate treatment. Purpose To investigate the diagnostic potential of signal fractions estimated from a two-component model using combined T2- and diffusion-weighted imaging (T2-DWI). Material and methods 62 patients with prostate cancer and 14 patients with benign prostatic hyperplasia (BPH) underwent combined T2-DWI (TE = 55 and 73 ms, b-values = 50 and 700 s/mm2) following clinical suspicion of cancer, providing a set of 4 measurements per voxel. Cancer was confirmed in post-MRI biopsy, and regions of interest (ROIs) were delineated based on radiology reporting. Signal fractions of the slow component (SFslow) of the proposed two-component model were calculated from a model fit with 2 free parameters, and compared to conventional bi- and mono-exponential apparent diffusion coefficient (ADC) models. Results All three models showed a significant difference (p<0.0001) between peripheral zone (PZ) tumor and normal tissue ROIs, but not between non-PZ tumor and BPH ROIs. The area under the receiver operating characteristics curve distinguishing tumor from prostate voxels was 0.956, 0.949 and 0.949 for the two-component, bi-exponential and mono-exponential models, respectively. The corresponding Spearman correlation coefficients between tumor values and Gleason Grade Group were fair (0.370, 0.499 and -0.490), but not significant. Conclusion Signal fraction estimates from a two-component model based on combined T2-DWI can differentiate between tumor and normal prostate tissue and show potential for prostate cancer diagnosis. The model performed similarly to conventional diffusion models.

Funder

The Liaison Committee between the Central Norway Regional Health Authority and the Norwegian University of Science and Technology

Norges Forskningsråd

Norges Teknisk-Naturvitenskapelige Universitet

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3