Correlated color temperature and light intensity: Complementary features in non-visual light field

Author:

Arguelles-Prieto Raquel,Madrid Juan Antonio,Rol Maria AngelesORCID,Bonmati-Carrion Maria Angeles

Abstract

An appropriate exposure to the light-dark cycle, with high irradiances during the day and darkness during the night is essential to keep our physiology on time. However, considering the increasing exposure to artificial light at night and its potential harmful effects on health (i.e. chronodisruption and associated health conditions), it is essential to understand the non-visual effects of light in humans. Melatonin suppression is considered the gold standard for nocturnal light effects, and the activation of intrinsically photosensitive retinal ganglion cells (ipRGCs) through the assessment of pupillary light reflex (PLR) has been recently gaining attention. Also, some theoretical models for melatonin suppression and retinal photoreceptors activation have been proposed. Our aim in this study was to determine the influence of correlated color temperature (CCT) on melatonin suppression and PLR, considering two commercial light sources, as well as to explore the possible correlation between both processes. Also, the contribution of irradiance (associated to CCT) was explored through mathematical modelling on a wider range of light sources. For that, melatonin suppression and PLR were experimentally assessed on 16 healthy and young volunteers under two light conditions (warmer, CCT 3000 K; and cooler, CCT 5700 K, at ~5·1018 photons/cm2/sec). Our experimental results yielded greater post-stimulus constriction under the cooler (5700 K, 13.3 ± 1.9%) than under the warmer light (3000 K, 8.7 ± 1.2%) (p < 0.01), although no significant differences were found between both conditions in terms of melatonin suppression. Interestingly, we failed to demonstrate correlation between PLR and melatonin suppression. Although methodological limitations cannot be discarded, this could be due to the existence of different subpopulations of Type 1 ipRGCs differentially contributing to PLR and melatonin suppression, which opens the way for further research on ipRGCs projection in humans. The application of theoretical modelling suggested that CCT should not be considered separately from irradiance when designing nocturnal/diurnal illumination systems. Further experimental studies on wider ranges of CCTs and light intensities are needed to confirm these conclusions.

Funder

Fundación Séneca

Ministerio de Educación, Cultura y Deporte

Instituto de Salud Carlos III

Agencia Estatal de Investigación

Ministerio de Ciencia, Innovación y Universidades

Horizon 2020

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference71 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3