A novel route for identifying starch diagenetic products in the archaeological record

Author:

Oldenburg ThomasORCID,Brown Melisa,Inwood Jamie,Radović Jagoš,Snowdon Ryan,Larter Steve,Mercader JulioORCID

Abstract

This work introduces a novel analytical chemistry method potentially applicable to the study of archaeological starch residues. The investigation involved the laboratory synthesis of model Maillard reaction mixtures and their analysis through Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS). Thus, starch from sixteen plant species were matured while reacting it with the amino acid glycine. The FTICR-MS analysis revealed > 5,300 molecular compounds, with numerous unique heteroatom rich compound classes, ranging from 20 (Zea mays) to 50 (Sorghum bicolor). These classes were investigated as repositories of chemical structure retaining source and process-specific character, linked back to botanical provenance. We discussed the Maillard reaction products thus generated, a possible pathway for the preservation of degraded starch, while also assessing diagenetic recalcitrance and adsorption potential to mineral surfaces. In some cases, hydrothermal experimentation on starches without glycine reveals that the chemical complexity of the starch itself is sufficient to produce some Maillard reaction products. The article concludes that FTICR-MS offers a new analytical window to characterize starchy residue and its diagenetic products, and is able to recognize taxonomic signals with the potential to persist in fossil contexts.

Funder

Social Sciences and Humanities Research Council of Canada

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3