Resilience to height loss of articular cartilage of osteoarthritic stifle joints of old pigs, compared with healthy cartilage from young pigs in a tribological pin—on—plate exposure, revealing similar friction forces

Author:

Engelhardt Jan P.,Schütte Andy,Hetjens Svetlana,Reisig Gregor,Schwarz Markus L.ORCID

Abstract

Introduction We saw a lack of data on the biomechanical behavior of degenerated articular cartilage (OA) compared with that of healthy cartilage, even though the susceptibility to wear and tear of articular cartilage plays a key role in the progression of osteoarthritis (OA). Therefore, we performed a comparison between naturally occurring OA and healthy cartilage from pigs, before and after tribological stress. Aim The aim of the study was to compare OA-cartilage with healthy cartilage and to analyze the resilience to tribological shear stress, which will be measured as height loss (HL), and to friction forces of the cartilage layers. The findings will be substantiated in macro- and microscopical evaluations before and after tribological exposure. Methods We assessed stifle joints of fifteen old and sixteen young pigs from the local abattoir radiologically, macroscopically and histologically to determine possible OA alterations. We put pins from the femoral part of the joints and plates from the corresponding tibial plateaus in a pin-on-plate tribometer under stress for about two hours with about 1108 reciprocating cycles under a pressure of approximately 1 MPa. As a surrogate criterion of wear and tear, the HL was recorded in the tribometer. The heights of the cartilage layers measured before and after the tribological exposure were compared histologically. The condition of the cartilage before and after the tribological exposure was analyzed both macroscopically with an adapted ICRS score and microscopically according to Little et al. (2010). We assessed the friction forces acting between the surfaces of the cartilage pair–specimens. Results Articular cartilage taken from old pigs showed significant degenerative changes compared to that taken from the young animals. The macroscopic and microscopic scores showed strong alterations of the cartilage after the tribological exposure. There was a noticeable HL of the cartilage specimens after the first 100 to 300 cycles. The HL after tribological exposure was lower in the group of the old animals with 0.52 mm ± 0.23 mm than in the group of the young animals with 0.86 mm ± 0.26 mm (p < 0.0001). The data for the HL was validated by the histological height measurements with 0.50 mm ± 0.82 mm for the old and 0.79 mm ±0.53 mm for the young animals (p = 0.133). The friction forces measured at the cartilage of the old animals were 2.25 N ± 1.15 N and 1.89 N ± 1.45 N of the young animals (p = 0.3225). Conclusion Unlike articular cartilage from young pigs, articular cartilage from old pigs showed OA alterations. Tribological shear stress exposure revealed that OA cartilage showed less HL than healthy articular cartilage. Tribological stress exposure in a pin–on–plate tribometer seemed to be an appropriate way to analyze the mechanical stability of articular cartilage, and the applied protocol could reveal weaknesses of the assessed cartilage tissue. Friction and HL seemed to be independent parameters when degenerated and healthy articular cartilage were assessed under tribological exposure in a pin–on- plate tribometer.

Funder

Federal Ministry of Education and Research

Medical Faculty Mannheim, Heidelberg University

Deutsche Gesellschaft für Orthopädie und Orthopädische Chirurgie e.V.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3