Content-based user classifier to uncover information exchange in disaster-motivated networks

Author:

Babvey PouriaORCID,Gongora-Svartzman Gabriela,Lipizzi CarloORCID,Ramirez-Marquez Jose E.

Abstract

Disasters strike communities around the world, with a reduced time-frame for warning and action leaving behind high rates of damage, mortality, and years in rebuilding efforts. For the past decade, social media has indicated a positive role in communicating before, during, and after disasters. One important question that remained un-investigated is that whether social media efficiently connect affected individuals to disaster relief agencies, and if not, how AI models can use historical data from previous disasters to facilitate information exchange between the two groups. In this study, the BERT model is first fine-tuned using historical data and then it is used to classify the tweets associated with hurricanes Dorian and Harvey based on the type of information provided; and alongside, the network between users is constructed based on the retweets and replies on Twitter. Afterwards, some network metrics are used to measure the diffusion rate of each type of disaster-motivated information. The results show that the messages by disaster eyewitnesses get the least spread while the posts by governments and media have the highest diffusion rates through the network. Additionally, the “cautions and advice” messages get the most spread among other information types while “infrastructure and utilities” and “affected individuals” messages get the least diffusion even compared with “sympathy and support”. The analysis suggests that facilitating the propagation of information provided by affected individuals, using AI models, will be a valuable strategy to pursue in order to accelerate communication between affected individuals and survival groups during the disaster and aftermath.

Funder

Academy of Finland

Office of the Under Secretary of Defense

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3