Nitrogen sources affected the biosynthesis of 2-acetyl-1-pyrroline, cooked rice elongation and amylose content in rice

Author:

Potcho Pouwedeou MouloumdemaORCID,Okpala Nnaemeka Emmanuel,Korohou Tchalla,Imran Muhammad,Kamara Nabieu,Zhang Jisheng,Aloryi Kelvin Dodzi,Tang Xiangru

Abstract

Many studies have been carried out on N sources effect on fragrant rice; however, their impact on rice grain quality is largely unclear. In this study, we evaluated the effects of different types of N sources on rice growth, yield, 2-acetyl-1-pyrroline (2AP), amylose and cooked rice elongation. Two indica rice cultivars, Basmati 385 (B385), Xiangyaxiangzhan (XYXZ) and two japonica cultivars, Yunjingyou (YJY), Daohuaxiang (DHX) were grown in experimental pots with six replications under four N sources: Potassium nitrate (KNO3), ammonium bicarbonate (NH4HCO3), urea (H2NCONH2) and sodium nitrate (NaNO3) in 2019 and 2020 early seasons. Our results showed that N dynamics regulated the number of panicles, 1000-grain weight, grain yield, 2-acetyl-1-pyrroline, amylose and cooked rice elongation across all the four treatments. The NH4HCO3 treatment significantly increased the number of panicles and grain yield across the four rice varieties compared with KNO3, H2NCONH2 and NaNO3 N sources in both 2019 and 2020 early season, The KNO3 treatment significantly showed higher 1000-grain weight in B-385, YJY, XYXZ and DHX compared to other N sources. Compared with other N sources treatment, the NH4HCO3 treatments significantly increased the 2AP contents in heading stage leaves, matured leaves and grains of B-385, YJY, XYXZ and DHX respectively. Cooked rice elongation percentage also showed significant difference in all treatments studied with KNO3 recorded the highest across the four varieties. Analysis of major enzymes and compounds such as P5C, P5CS, PDH, Pyrroline, proline and Methylglyoxal showed remarkable differences in each cultivar at heading and maturity stages with higher activity in NH4HCO3 and H2NCONH2 treatments. Similarly, in all treatments, we also observed significant increase in amylose content percentage, with NH4HCO3 having greater percentage of amylose.

Funder

National Natural Science Foundation of China

The Technology System of Modern Agricultural Industry in Guangdong

Guangzhou Science and Technology Project

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3