Abstract
Microbial communities of animals play a role in health and disease, including immunocompromised conditions. In the northeastern United States, cold-stunning events often cause endangered Kemp’s ridley turtles (Lepidochelys kempii) to become stranded on beaches in autumn. These sea turtles are admitted to rehabilitation facilities when rescued alive and are presumed immunocompromised secondary to hypothermia. To better understand the role that microbes play in the health of cold-stunned sea turtles, we characterized the oral and cloacal microbiome from Kemp’s ridley turtles at multiple timepoints during rehabilitation, from admission to pre-release, by using Illumina sequencing to analyze the 16S rRNA gene. Microbial communities were distinct between body sites and among turtles that survived and those that died. We found that clinical parameters such as presence of pneumonia or values for various blood analytes did not correlate with oral or cloacal microbial community composition. We also investigated the effect of antibiotics on the microbiome during rehabilitation and prior to release and found that the type of antibiotic altered the microbial community composition, yet overall taxonomic diversity remained the same. The microbiome of cold-stunned Kemp’s ridley turtles gradually changed through the course of rehabilitation with environment, antibiotics, and disease status all playing a role in those changes and ultimately the release status of the turtles.
Funder
Dr. Robert W. Spayne Research Grant 2015
Nancy Goranson Endowment Fund 2015
Northeastern University
Publisher
Public Library of Science (PLoS)
Reference82 articles.
1. Lepidochelys kempii.;T Wibbels;The IUCN Red List of Threatened Species.,2019
2. Medical Care of Seaturtles
3. Global Conservation Priorities for Marine Turtles;BP Wallace;PLoS ONE,2011
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献