Breast lesion detection through MammoWave device: Empirical detection capability assessment of microwave images’ parameters

Author:

Sani Lorenzo,Vispa Alessandro,Loretoni Riccardo,Duranti Michele,Ghavami Navid,Alvarez Sánchez-Bayuela DanielORCID,Caschera Stefano,Paoli Martina,Bigotti Alessandra,Badia Mario,Scorsipa Michele,Raspa Giovanni,Ghavami Mohammad,Tiberi GianluigiORCID

Abstract

MammoWave is a microwave imaging device for breast lesions detection, which operates using two (azimuthally rotating) antennas without any matching liquid. Images, subsequently obtained by resorting to Huygens Principle, are intensity maps, representing the homogeneity of tissues’ dielectric properties. In this paper, we propose to generate, for each breast, a set of conductivity weighted microwave images by using different values of conductivity in the Huygens Principle imaging algorithm. Next, microwave images’ parameters, i.e. features, are introduced to quantify the non-homogenous behaviour of the image. We empirically verify on 103 breasts that a selection of these features may allow distinction between breasts with no radiological finding (NF) and breasts with radiological findings (WF), i.e. with lesions which may be benign or malignant. Statistical significance was set at p<0.05. We obtained single features Area Under the receiver operating characteristic Curves (AUCs) spanning from 0.65 to 0.69. In addition, an empirical rule-of-thumb allowing breast assessment is introduced using a binary score S operating on an appropriate combination of features. Performances of such rule-of-thumb are evaluated empirically, obtaining a sensitivity of 74%, which increases to 82% when considering dense breasts only.

Funder

Horizon 2020 Framework Programme

H2020 Marie Skłodowska-Curie Actions

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3