District level correlates of COVID-19 pandemic in India during March-October 2020

Author:

Tamrakar VandanaORCID,Srivastava Ankita,Saikia NanditaORCID,Parmar Mukesh C.ORCID,Shukla Sudheer Kumar,Shabnam Shewli,Boro Bandita,Saha Apala,Debbarma Benjamin

Abstract

Background COVID-19 is affecting the entire population of India. Understanding district level correlates of the COVID-19’s infection ratio (IR) is essential for formulating policies and interventions. Objective The present study aims to investigate the district level variation in COVID-19 during March-October 2020. The present study also examines the association between India’s socioeconomic and demographic characteristics and the COVID-19 infection ratio at the district level. Data and methods We used publicly available crowdsourced district-level data on COVID-19 from March 14, 2020, to October 31, 2020. We identified hotspot and cold spot districts for COVID-19 cases and infection ratio. We have also carried out two sets of regression analysis to highlight the district level demographic, socioeconomic, household infrastructure facilities, and health-related correlates of the COVID-19 infection ratio. Results The results showed on October 31, 2020, the IR in India was 42.85 per hundred thousand population, with the highest in Kerala (259.63) and the lowest in Bihar (6.58). About 80 percent infected cases and 61 percent deaths were observed in nine states (Delhi, Gujarat, West Bengal, Uttar Pradesh, Andhra Pradesh, Maharashtra, Karnataka, Tamil Nadu, and Telangana). Moran’s- I showed a positive yet poor spatial clustering in the COVID-19 IR over neighboring districts. Our regression analysis demonstrated that percent of 15–59 aged population, district population density, percent of the urban population, district-level testing ratio, and percent of stunted children were significantly and positively associated with the COVID-19 infection ratio. We also found that, with an increasing percentage of literacy, there is a lower infection ratio in Indian districts. Conclusion The COVID-19 infection ratio was found to be more rampant in districts with a higher working-age population, higher population density, a higher urban population, a higher testing ratio, and a higher level of stunted children. The study findings provide crucial information for policy discourse, emphasizing the vulnerability of the highly urbanized and densely populated areas.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference45 articles.

1. Coronaviruses and SARS-CoV-2: A Brief Overview;S Ludwig;Anesthesia and Analgesia,2020

2. Worldometers. COVID-19 coronavirus pandemic. Retrieved June 30, 2020, from https://www.worldometers.info/coronavirus/. 2020.

3. Comorbidities and multi-organ injuries in the treatment of COVID-19;T Wang;The Lancet,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3