Quantitative CT imaging features for COVID-19 evaluation: The ability to differentiate COVID-19 from non- COVID-19 (highly suspected) pneumonia patients during the epidemic period

Author:

Peng Shengkun,Pan Lingai,Guo Yang,Gong Bo,Huang Xiaobo,Liu Siyun,Huang Jianxin,Pu Hong,Zeng JieORCID

Abstract

Objectives COVID-19 and Non-Covid-19 (NC) Pneumonia encountered high CT imaging overlaps during pandemic. The study aims to evaluate the effectiveness of image-based quantitative CT features in discriminating COVID-19 from NC Pneumonia. Materials and methods 145 patients with highly suspected COVID-19 were retrospectively enrolled from four centers in Sichuan Province during January 23 to March 23, 2020. 88 cases were confirmed as COVID-19, and 57 patients were NC. The dataset was randomly divided by 3:2 into training and testing sets. The quantitative CT radiomics features were extracted and screened sequentially by correlation analysis, Mann-Whitney U test, the least absolute shrinkage and selection operator (LASSO) logistic regression (LR) and backward stepwise LR with minimum AIC methods. The selected features were used to construct the LR model for differentiating COVID-19 from NC. Meanwhile, the differentiation performance of traditional quantitative CT features such as lesion volume ratio, ground glass opacity (GGO) or consolidation volume ratio were also considered and compared with Radiomics-based method. The receiver operating characteristic curve (ROC) analysis were conducted to evaluate the predicting performance. Results Compared with traditional CT quantitative features, radiomics features performed best with the highest Area Under Curve (AUC), sensitivity, specificity and accuracy in the training (0.994, 0.942, 1.0 and 0.965) and testing sets (0.977, 0.944, 0.870, 0.915) (Delong test, P < 0.001). Among CT volume-ratio based models using lesion or GGO component ratio, the model combining CT lesion score and component ratio performed better than others, with the AUC, sensitivity, specificity and accuracy of 0.84, 0.692, 0.853, 0.756 in the training set and 0.779, 0.667, 0.826, 0.729 in the testing set. The significant difference of the most selected wavelet transformed radiomics features between COVID-19 and NC might well reflect the CT signs. Conclusions The differentiation between COVID-19 and NC could be well improved by using radiomics features, compared with traditional CT quantitative values.

Funder

Sichuan Province Science and Technology Support Program

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference24 articles.

1. Guideline for primary care of adult community acquired pneumonia: practice version(2018);Association CM;Chin J Gen Pract,2019

2. Influenza-like illness outbreaks in China during 2017–2018 surveillance season;LJ Liu;Zhonghua Yu Fang Yi Xue Za Zhi,2019

3. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China;D Wang;JAMA,2020

4. Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR;Y Fang;Radiology,2020

5. False-Negative Results of Real-Time Reverse-Transcriptase Polymerase Chain Reaction for Severe Acute Respiratory Syndrome Coronavirus 2: Role of Deep-Learning-Based CT Diagnosis and Insights from Two Cases;D Li;Korean J Radiol,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3